K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

Đáp án D

Đặt z = a + b i ⇒ a 2 + b 2 = 1 .  

Khi đó  A = a + 1 2 + b 2 + 3 a - 1 2 + b 2 = 2 a + 2 + 3 2 - 2 a

Xét hàm số  f a = 2 a + 2 + 3 2 - 2 a  với a ∈ - 1 ; 1  ta có

  f a = 1 2 a + 2 - 3 2 - 2 a = 0 ⇔ 9 2 a + 2 = 2 - 2 a ⇔ a = - 4 5  

Khi đó A m a x = 2 10

25 tháng 5 2017

Đáp án D

Phương pháp:

- Biểu diễn số phức và giải bài toán tìm GTLN trên mặt phẳng tọa độ.

Cách giải: Gọi I(1;1), J - 1 ; - 3 , A(2;3)

Xét số phức z = x + yi, (x,y ∈ R), có điểm  biểu diễn là M(x;y)

 (1)

 => M di chuyển trên đường elip có tiêu điểm I và  J, độ dài trục lớn là  3 5

Tìm giá trị lớn nhất của  z - 2 - 3 i  tức là tìm độ dài lớn nhất của đoạn AM khi M di chuyển trên elip

Ta có:  I A → = ( 1 ; 2 ) , J A → = 3 ; 6 => J A → = 3 I A → ,điểm A nằm trên trục lớn của elip.

=>AM đạt độ  dài lớn nhất khi và chỉ khi M trùng với B, là đỉnh của elip nằm trên trục lớn và khác phía A so với điểm I.

Gọi S là trung điểm của IJ => S(0; - 1)

Độ dài đoạn AB = SA + SB

Mà  A S → = - 2 ; - 4 => AS =  2 5 , SB =  6 5 2 = 3 5 => AB =  5 5

Vậy  z - 2 - 3 i m a x = 5 5

10 tháng 1 2019

Đáp án A.

Gọi M x , y  là điểm biểu diễn số phức z.

Từ giả thiết, ta có z − 4 − 3 i = 5 ⇔ x − 4 2 + y − 3 2 = 5 ⇒ M  thuộc đường tròn (C) tâm I 4 ; 3 ,  bán kính R = 5 .  Khi đó P = M A + M B ,  với A − 1 ; 3 , B 1 ; − 1 .

Ta có

P 2 = M A 2 + M B 2 + 2 M A . M B ≤ 2 M A 2 + M B 2 .

Gọi E 0 ; 1  là trung điểm của AB

⇒ M E 2 = M A 2 + M B 2 2 − A B 2 4 .

Do đó P 2 ≤ 4 M E 2 + A B 2  mà

M E ≤ C E = 3 5   s u y   r a   P 2 ≤ 4. 3 5 2 + 2 5 2 = 200.

Với C là giao điểm của đường thẳng EI

với đường tròn (C).

Vậy P ≤ 10 2 .  Dấu “=” xảy ra 

⇔ M A = M B M = C ⇒ M 6 ; 4 ⇒ a + b = 10.

30 tháng 7 2018

Chọn D.

29 tháng 5 2017

10 tháng 4 2017

7 tháng 12 2017

Đáp án A

13 tháng 12 2019

Đáp án A.

 

Áp dụng bđt Bunhiacopski:

P=6+4=10.

2 tháng 4 2019

Chọn C

22 tháng 11 2018

Đáp án A.

Phương pháp:

Từ  z = z ¯ + 4 - 3 i  tìm ra quỹ tích điểm M(x;y) biểu diễn cho số phức z = x + yi

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có: 

|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất ó MA = MB

Cách giải: Gọi z = x + ui ta có:

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có: 

|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất.

Ta có:  dấu bằng xảy ra ó MA = MB => M thuộc trung trực của AB.

Gọi I là trung điểm của AB ta có  và A B → = 3 ; - 4

Phương trình đường trung trực của AB là

Để (MA + MB)min ó Tọa độ điểm M là nghiệm của hệ phương trình