K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

Ai júp mình với, mai mình thi rồi, không được gải là thầy hiệu trưởng xén cổ mình đi đấy!!

22 tháng 8 2018

a) Áp dụng nhiều lần công thức \(\left(x+y\right)^3=x^3-y^3+3xy\left(x+y\right)\), ta có:

\(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)

\(=a^3+b^3+3ab\left(a+b\right)+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(Đpcm\right)\)

b) Ta có:

\(a^3+b^3+c^3-3abc\)

\(=a^3+3ab\left(a+b\right)+b^2+c^3-3abc-3ab\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)

Mình nghĩ bằng thế này mới đúng, bạn chắc ghi sai đề rồi bucminh

22 tháng 8 2018

a) Ta có: (a + b + c)3 - a3 - b3 - c3 = [ (a + b + c)3 - a3 ] - ( b3 + c3)

= (a + b + c - a) ( a2 + b2 + c2 + 2ab + 2bc + 2ac + a2 + ab + ac + a2) - (b + c) ( b2 - bc + c3)

= (b + c) ( 3a2 + b2 + c2 + 3ab + 2bc + 3ac) - (b + c) ( b2 - bc + c3)

= ( b + c) ( 3a2 + b2 + c2 + 3ab + 2bc + 3ac - b2 + bc - c3)

= ( b + c) ( 3a2 + 3ab + 3bc + 3ac)

= 3 (b + c) [a (a + b) + c (a + b)]

= 3 (b + c) (a + b) (a + c) (đpcm)

\(\Leftrightarrow a^3+b^3+c^3-3abc>=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc>=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)>=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac>=0\)(vì a+b+c>0)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2>=0\)(luôn đúng)

3 tháng 1 2022

\(a^3+b^3+c^3\ge3abc\\ \Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\ge0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\ge0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)

Vì \(a,b,c>0\Leftrightarrow a+b+c>0\)

Lại có \(a^2+b^2+c^2-ab-bc-ca=\dfrac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

Nhân vế theo vế ta được đpcm

Dấu \("="\Leftrightarrow a=b=c\)

22 tháng 5 2019

21 tháng 12 2021

a3+b3+c3= (a+b)3-3ab(a+b)+c3
Thay a+b=-c vào, ta được: 
a3 + b3 +c3 = (-c)3 -3ab(-c) +c3 = 3abc (đpcm)

25 tháng 8 2021

a+b+c+d=0 => a+d= -b-c;       (a+b)3=a3+b3+3ab(a+b) => a3+b3=(a+b)3-3ab(a+b)

a3+d3+b3+d3

=(a+d)3- 3ad(a+d)+ (b+c)3-3bc(b+c) (1)

Do a+d=-b-c nên pt (1) trở thành:

-(b+c)3-3ad(-b-c)+ (b+c)3-3bc(b+c)

=3ad(b+c)-3bc(b+c)

=3(b+c)(ad-bc) <đccm>