K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2022

a/

\(\overline{dcba}⋮4\Rightarrow\overline{ba}⋮4\)

\(\overline{ba}=10b+a=8b+\left(2b+a\right)⋮4\)

Mà \(8b⋮4\Rightarrow2b+a⋮4\)

c/

\(\overline{dcba}=1000d+100c+10b+a=\)

\(=986d+14d+87c+13c+10b+a=\)

\(=\left(986d+87c\right)+\left(14d+13c+10b+a\right)⋮29\)

Mà \(986d+87c⋮29\Rightarrow14d+13c+10b+a⋮29\)

\(\Rightarrow28d+26c+20b+2a⋮29\)

\(\Rightarrow29\left(d+c+b+a\right)-\left(28d+26c+20b+2a\right)=\)

\(=d+3c+9b+27a⋮29\)

AH
Akai Haruma
Giáo viên
16 tháng 1 2018

Bài 1:

\(A=3^{3m^2+6n-61}+4\)

Ta thấy \(3m^2+6n-61=3(m^2+2n-21)+2=3t+2\)

Do đó: \(A=3^{3t+2}+4\)

Ta thấy: \(3^{3}\equiv 1\pmod {13}\Rightarrow 3^{3t}\equiv 1\pmod {13}\)

\(\Rightarrow 3^{3t+2}\equiv 9\pmod {13}\Leftrightarrow A=3^{3t+2}+4\equiv 13\equiv 0\pmod {13}\)

Do đó \(A\vdots 13\)

Để $A$ là số nguyên tố thì \(A=13\Leftrightarrow 3^{3m^2+6n-61}+4=13\)

\(\Leftrightarrow 3m^2+6n-61=2\)

\(\Leftrightarrow m^2+2n=21\)

Từ đây suy ra m lẻ. Mà: \(n>0\Rightarrow m^2=21-2n\leq 21\)

\(\Leftrightarrow m\leq 4\)

Do đó: \(m\in\left\{1;3\right\}\)

+) \(m=1\Rightarrow n=10\Rightarrow (m,n)=(1,10)\)

\(+)m=3\Rightarrow n=6\Rightarrow (m,n)=(3,6)\)

AH
Akai Haruma
Giáo viên
16 tháng 1 2018

Bài 2:
a)

Nếu \(a,b\) đều lẻ thì \(c\) chẵn. Mà $c$ là số nguyên tố nên $c=2$

\(\Rightarrow a,b< c\Leftrightarrow a,b< 2 \) (vô lý)

Nếu $a,b$ đều chẵn \(\Rightarrow a=b=2\Rightarrow c=8\not\in\mathbb{P}\)

Do đó $a,b$ khác tính chẵn lẻ. Không mất tính tổng quát giả sử $b=2$, còn $a$ lẻ

Ta có: \(a^2+2^a=c\)

Ta biết rằng một số chinh phương khi chia cho $3$ thì có dư là $0;1$.

Nếu \(a\vdots 3\Rightarrow a=3\Rightarrow c=17\in\mathbb{P}\)

Nếu \(a\not\vdots 3\Rightarrow a^2\equiv 1\pmod 3\)

Và: \(2^a\equiv (-1)^a\equiv -1\pmod 3\) (do a lẻ)

\(\Rightarrow a^2+2^a\equiv 1+(-1)\equiv 0\pmod 3\) hay \(c\equiv 0\pmod 3\)

\(\Rightarrow c=3\)

Do đó: \(2^a+a^2=3\Rightarrow 2^a<3\Rightarrow a<2 \) (vô lý)

Vậy \((a,b,c)=(3,2,17)\) và hoán vị $a,b$

b) \(a^2-2b^2=1\)

\(\Leftrightarrow a^2=2b^2+1\)

Ta biết rằng một số chính phương khi chia $3$ dư $0$ hoặc $1$

Nếu \(b^2\equiv 0\pmod 3\Rightarrow b\equiv 0\pmod 3\Rightarrow b=3\)

\(\Rightarrow a^2=19\Rightarrow a\not\in\mathbb{P}\)

Nếu \(b^2\equiv 1\pmod 3\Rightarrow 2b^2+1\equiv 3\equiv 0\pmod 3\Leftrightarrow a^2\equiv 0\pmod 3\)

\(\Rightarrow a\vdots 3\Rightarrow a=3\)

Thay vào suy ra \(b=2\) (thỏa mãn)

Vậy \((a,b)=(3,2)\)

áp dụng cái này: 
a²/x + b²/y + c²/z +d²/t ≥ (a + b +c +d)²/(x + y + z + t) (wen thuộc) 
1/a + 1/b + 1/b + 1/c ≥ 16/(a + 2b +c) 
1/a + 1/b + 1/c + 1/c ≥ 16/(a + b +2c) 
1/a + 1/a + 1/b + 1/c ≥ 16/(2a + b +c) 
Cộng 3 vế lại: 
1/a + 1/b +1/c ≥ 4[1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b)] 
⇔ ¼ (1/a + 1/b +1/c) ≥ 1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b) 
⇒ ½ (1/a + 1/b +1/c) ≥ ¼ (1/a + 1/b +1/c) ≥ 1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b) 
⇔ ½ (1/a + 1/b +1/c) ≥ 1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b) 
Dấu = xra khi a = b = c và 1/a + 1/b +1/c = 0 
⇒ dấu = không xảy ra. 
⇒ ½ (1/a + 1/b +1/c) > 1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b) 

16 tháng 8 2017

a)Ta có: ad-bc=1 => ad>bc=>\(\dfrac{a}{b}\)>\(\dfrac{c}{d}\)=>x>y (*)
Ta có: cn-dm=1=>cn > dm=> \(\dfrac{c}{d}\)>\(\dfrac{m}{n}\)=> y>z(**)
Từ (*) và (**) ta có: \(\dfrac{m}{n}\)< \(\dfrac{c}{d}\)<\(\dfrac{a}{b}\)
hay z<y<x
b) Ta có: ad-bc=1=> ad=bc+1
cn-dm=1=> cn=dm+1
Ta lại có: cb+dm+1=cb+1+dm
hay cb+cn=ad+dm
=> c(b+n)=d(a+m)
=> \(\dfrac{c}{d}\)=\(\dfrac{a+m}{b+n}\)
Vậy y = t

AH
Akai Haruma
Giáo viên
18 tháng 12 2017

Câu 1:

Ta sẽ chỉ ra rằng một số lập phương \(a^3\) chia 7 chỉ có thể có dư là 0,1,6

Thật vậy:

Nếu \(a\equiv 0\pmod 7\Rightarrow a^3\equiv 0\pmod 7\)

Nếu \(a\equiv 1\pmod 7\Rightarrow a^3\equiv 1\pmod 7\)

Nếu \(a\equiv 2\mod 7\Rightarrow a^3\equiv 2^3\equiv 1\pmod 7\)

Nếu \(a\equiv 3\pmod 7\Rightarrow a^3\equiv 3^3\equiv 6\pmod 7\)

Nếu \(a\equiv 4\pmod 7\Rightarrow a^3\equiv 4^3\equiv 1\pmod 7\)

Nếu \(a\equiv 5\pmod 7\Rightarrow a^3\equiv 5^3\equiv 6\pmod 7\)

Nếu \(a\equiv 6\pmod 7\Rightarrow a^3\equiv 6^3\equiv (-1)^3\equiv 6\pmod 7\)

Do đó một số lập phương chia cho 7 luôn có dư là 0,1,6

Mà \(2016n+3=7.288n+3\) chia 7 dư 3

Do đó A không thể là số lập phương với mọi n

Vậy không tồn tại n thỏa mãn.

AH
Akai Haruma
Giáo viên
18 tháng 12 2017

Bài 2:

Không mất tính tổng quát giả sử \(a\geq b\geq c\)

Để A là số nguyên thì \((ab-1)(bc-1)(ca-1)\vdots abc\)

\(\Leftrightarrow (ab^2c-ab-bc+1)(ac-1)\vdots abc\)

\(\Leftrightarrow a^2b^2c^2-abc(a+b+c)+ab+bc+ac-1\vdots abc\)

\(\Leftrightarrow ab+bc+ac-1\vdots abc\)

Đặt \(ab+bc+ac-1=kabc\Rightarrow k=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{abc}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq 1+1+1\)

\(\Leftrightarrow k< 3\Rightarrow k\in\left\{1;2\right\}\)

TH1 : $k=1$

Thay vào : \(ab+bc+ac-1=abc\Leftrightarrow 1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{abc}\)

Theo giả sử suy ra \(\frac{1}{a}\leq \frac{1}{b}\leq \frac{1}{c}\)

\(\Rightarrow 1\leq \frac{3}{c}-\frac{1}{abc}< \frac{3}{c}\Rightarrow c<3 \Rightarrow c\in\left\{1;2\right\}\)

+) \(c=1\Rightarrow ab+a+b-1=ab\Leftrightarrow a+b=1\) (vô lý vì \(a\geq b\geq 1\) )

+) \(c=2\Rightarrow ab+2a+2b-1=2ab\Leftrightarrow 2a+2b-1=ab\)

\(\Leftrightarrow (a-2)(b-2)=3\) (1)

Vì \(a\geq b\geq c\geq 2\Rightarrow a-2\geq b-2\geq 0\) (2)

(1),(2) suy ra \(\left\{\begin{matrix} a-2=3\\ b-2=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=5\\ b=3\end{matrix}\right.\)(thỏa mãn)

TH2: $k=2$

Thay vào: \(ab+bc+ac-1=2abc\Leftrightarrow 2=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{abc}\)

\(\Rightarrow 2\leq \frac{3}{c}-\frac{1}{abc}< \frac{3}{c}\Rightarrow c< \frac{3}{2}\)

Do đó \(c=1\Rightarrow ab+a+b-1=2ab\)

\(\Leftrightarrow a+b-1=ab\Leftrightarrow (a-1)(b-1)=0\)

+) Nếu \(a=1\Rightarrow b\leq a=1\Rightarrow b=1\)

+) Nếu $b=1$ thì $a$ là số tự nhiên tùy ý lớn hơn hoặc bằng 1

Vậy \((a,b,c)=(5;3;2)\) và hoán vị, hoặc \((a,b,c)=(k,1,1)\) và hoán vị với \(k\in\mathbb{N}^*\) tùy ý.

 

 

6 tháng 9 2017

a) 2.16 \(\ge\) 2n > 4

32 \(\ge\) 2n > 4

=> n = 3,4 . Tương đương với 2n = 23 ; 2n = 24

b) 9.27 \(\le\) 3n \(\le\) 243

243 \(\le\) 3n \(\le\) 243

=> 3n = 243 = 35 . Tương đương với 3n=35 , vậy n = 5

18 tháng 9 2017

lên câu hỏi tương tự

18 tháng 9 2017

a)\(2.16\ge2^n>4\)

\(2.2^4\ge2^n>2^2\)

\(2^5\ge2^n>2^2\)

\(5\ge n>2\)

\(\Rightarrow n\in\left(5,4,3\right)\)

b)\(9.27\le3^n\le243\)

\(3^2.3^3\le3^n\le3^5\)

\(3^5\le3^n\le3^5\)

\(\Rightarrow n=5\)

7 tháng 6 2016

18/31 giữ nguyên . 181818/313131=18 nhân 10101/31 nhân 10101 = 18/31

18/31=181818/313131