Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để x là số nguyên thì a + 17/a là số nguyên
hay a + 17/a \(\in\)z ( a + 17/a thuộc tập hợp Z )
=> 17/a \(\in\) Z nên a \(\in\)Ư(7) = { 1 ; 7 }
Vậy vs a = { 1 ; 7 } thì x là số nguyên
~ Ủng Hộ Mk ~
a , Để y là số nguyên dương thì 2a - 1 ; - 3 phải cùng dấu
Mà - 3 < 0
=> 2a - 1 < 0 => 2a < 1
=> a < 1/2
Vậy a < 1/2 thì y là số nguyên dương
b , Để y là số nguyên âm
Thì 2a - 1 ; -3 phải khác dấu
Mà - 3 < 0
=> 2a - 1 > 0 => 2a > 1
=> a > 1/2
Vậy a > 1/2 thì y là số nguyên âm
Chúc bn hc tốt <3
1
a.=>x-2<0=>x<2
b.=>3x+6<0=>3x<-6=>x<-2
Chúc bạn học tốt ! ^_^
a) \(P=\frac{a^2b}{c}\)
P = 0 khi \(a^2b=0\)
\(\Rightarrow\hept{\begin{cases}a^2=0\\b=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\)(hai trường hợp)
P âm khi
\(\hept{\begin{cases}a^2b< 0\\c< 0\end{cases}}\)
Mà \(a^2\ge0\forall a\)
\(\Rightarrow P< 0khi\hept{\begin{cases}b< 0\\c< 0\end{cases}}\)(hai trường hợp)
P > 0 khi \(a>0;b>0;c>0\)
CÂU b) LÀM TƯƠNG TỰ NHA BẠN HOK TOT
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
#)Giải :
Câu 1 :
a)
- Nếu a = 0 => b = 0 hoặc b - c = 0 => b = c hoặc b = c ( đều vô lí ) => a khác 0
- Nếu b = 0 => a = 0 ( vô lí ) => b khác 0
=> c = 0
=> |a| = b2.b = b3
=> b3 ≥ 0
=> b là số nguyên dương
=> a là số nguyên âm
Vậy a là số nguyên dương, b là số nguyên âm và c = 0
Bài làm:
\(x=\frac{a-4}{a}=1-\frac{4}{a}\)
Để x là số nguyên => \(\frac{4}{a}\inℤ\)
\(\Rightarrow4⋮a\Rightarrow a\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Ta có:
\(x=\frac{a-4}{a}=1-\frac{4}{a}\)
Để x có GTN thì \(1-\frac{4}{a}\)phải có GTN
\(\Rightarrow\frac{4}{a}\)có GTN
\(\Rightarrow4⋮a\)
\(\Rightarrow a\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;4;-4\right\}\)nên \(a\in\left\{1;-1;4;-4\right\}\)
Vậy \(a\in\left\{1;-1;4;-4\right\}\)