K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2016

????????????????????

3 tháng 6 2016

Cái này là điều hiển nhiên rồi, làm sao phải chứng minh.

Bài 1: Các câu sau, câu nào đúng,câu nào sai?

a) Mọi số hữu tỉ dương đều lớn hơn 0      Đ

b) Nếu a là số hữu tỉ âm thì a là số tự nhiên       S

c) Nếu a là số tự nhiên thì a là số hữu tỉ âm            S

d) 0 là số hữu tỉ dương                             S

 a/b < c/d => ad < cb
=> ad + ab < bc + ab
=> a ( d+b) < b ( a +c)
=> a/b < a+ c/d +b (1)
* a/b < c/d => ad < cb
=> ad + cd < cb + cd
=> d ( a +c) < c ( b+d)
=> c/d > a + c/b + d (2)
Từ (1) và (2) => a/b < a+c/b + d < c/d

7 tháng 9 2016

Do a,b bình đẳng  , coi b>0

A) a;b cùng dấu 

=> a dương => a>0

=>a/b<0/b=0

=> a/b là số hữu tỉ dương nếu a;b cùng dâu (1)

b) a và b khác dấu <=> a dương và b âm hoặc a âm và b dương  

Nếu a dương và b âm thì số hữu tỉ : a/b =m/-n âm (a=m;b=-n) 

Nếu a âm b dương thì số hữu tỉ a/b = -p/q âm ( a=-b ; b=q ) 

7 tháng 9 2016

Khi a,b cùng dấu:

\(\frac{a}{b}>0\)

Khi a, b khác dấu:

\(\frac{a}{b}< 0\)

23 tháng 8 2015

bn vào câu hỏi tương tự nhé!

23 tháng 8 2015

a) g/s (+) a và b cùng dấu dương 

=> a/b dương 

(+) a và b cùng dấu âm 

=> a/b ( dương ) 

25 tháng 8 2020

Nếu a/b > 1

=>a/b - b/b >0

=>(a-b)/b >0

=>a-b>0

=>a>b(đpcm)

25 tháng 8 2020

Ta có: \(\frac{a}{b}>1\)

\(\Leftrightarrow\frac{a}{b}-1>0\)

\(\Leftrightarrow\frac{a-b}{b}>0\)

Mà theo đề bài, b > 0 => \(a-b>0\Leftrightarrow a>b\)

Vậy \(\frac{a}{b}>1\Leftrightarrow a>b\)

26 tháng 8 2020

Gỉa sử : \(\frac{a}{b}< \frac{a+c}{b+c}< =>ab+ac< ab+bc\)

\(< =>ac< bc< =>a< b\)(đpcm)

Gỉa sử : \(\frac{a}{b}>\frac{a+c}{b+c}< =>ab+ac>ab+bc\)

\(< =>ac>bc< =>a>b\)(đpcm)

26 tháng 8 2020

1) Ta có: \(a< b\Leftrightarrow a\div b< b\div b\)

=> \(\frac{a}{b}< 1\)

2) \(a>b\Leftrightarrow a\div b>b\div b\)

=> \(\frac{a}{b}>1\)

31 tháng 10 2016
  • CM \(\frac{a}{b}< \frac{a+c}{b+d}\)

Do \(\frac{a}{b}< \frac{c}{d}\Rightarrow a.d< b.c\)

=> a.d + a.b < b.c + a.b

=> a.(b + d) < b.(a + c)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

  • CM \(\frac{a+c}{b+d}< \frac{c}{d}\)

Do \(\frac{a}{b}< \frac{c}{d}\Rightarrow a.d< b.c\)

=> a.d + c.d < b.c + c.d

=> d.(a + c) < c.(b + d)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)

31 tháng 10 2016

xin lỗi, mình nhầm chỗ này, cho mình sửa lại nha

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

Suy ra:

+) \(ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)

+) \(ad+cd< bc+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\frac{a+b}{b+d}< \frac{c}{d}\) (2)

(1),(2) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)

Chúc bạn học tốt

(hồi nãy mình nhầm chút xíu)

 

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)