Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co
111 va 148 chia het cho 37 nen 111x va 148y chia het cho 37
Ma : 111x + 148y = 7x+ 4y +(104x +144y) = (7x + 4y ) + 8.(13x + 18y)
Nen 13x +18 y chia het cho 37
ta có: 6a = 2.3.a chia hết cho 3
9a = 3.3.a chia hết cho 3
=> 6a + 9a chia hết cho 3 ( đpcm)
Tớ nghĩ đề đúng phải là:
6a + 9b chia hết cho 3
Ta có 6a + 9b = 3(2a + 3b) chia hết cho 3
Vậy....
a) Ta có (am)n = am.am...am (định nghĩa) (có n thừa số am)
= am + m + .... + m (có n hạng tử m)
= am.n (đpcm)
b) Ta có 5333 = 53.111 = (53)111 = 125111
3555 = 35.111 = (35)111 = 243111
Nhận thấy 125 < 243
=> 125111 < 243111
=> 5333 < 3555
b) Ta có 2400 = 24.100 = (24)100 = 16100
4200 = 42.100 = (42)100 = 16100
=> 2400 = 4200 (= 16100)
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)
\(\Rightarrow A>\frac{1}{70}+\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\)(60 số hạng)
\(\Rightarrow A>\frac{60}{70}>\frac{60}{80}=\frac{3}{4}\)
Vậy \(A>\frac{3}{4}\left(đpcm\right)\)
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)
\(\Rightarrow A>\frac{1}{70}+...+\frac{1}{70}\)(60 số hạng)
\(\Rightarrow A>\frac{60}{70}>\frac{60}{60}=\frac{3}{4}\)
Gọi d = ƯCLN ( a, a + b ) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b là tối giản => d = 1
=> ƯCLN(a, a + b ) = 1
=> a/b là tối giản
Thực hiện phép tính :
\(13-12+11+10-9+8-7+6-5+4-3+2-1=17\)
Nhanh nhất đó, 3 k (tích) nha !
a) Vì \(\hept{\begin{cases}17!=1.2.3......13.14.15.16.17⋮13\\15!=1.2.3.....13.14.15⋮13\\13!=1.2.3......11.12.13⋮13\end{cases}}\)(Dâu 3 chấm là chia hết nha bạn)
=> A = 17! + 15! + 13! chia hết cho 13
b) \(\hept{\begin{cases}17!=1.2.3......13.14.15.16.17⋮11\\15!=1.2.3.....13.14.15⋮11\\13!=1.2.3......11.12.13⋮11\end{cases}}\)
=> A = 17! + 15! + 13! chia hết cho 11
=Mà A = 17! + 15! + 13! chia hết cho 13
=> A chia hết cho 11.13 = 143