Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) \(a^2-a=a\left(a-1\right)\)
Vì a là số nguyên
=> a ; a-1 là 2 số nguyên liên tiếp
Vì trong 2 số nguyên liên tiếp tồn tại 1 số chẵn ( chia hết cho 2)
=> a(a-1) chia hết cho 2
=> \(a^2-a⋮2\)
Sai sai nên sửa đề:
b) \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\)
Vì đó là tích 3 số nguyên liên tiếp và trong 3 số đó luôn tồn tại 1 số chia hết cho 3
=> (a-1)a(a+1) chia hết cho 3
=> \(a^3-a⋮3\)
c) \(a^5-a=a\left(a^2-1\right)\left(a^2+1\right)=\left(a-1\right)a\left(a+1\right)\left[\left(a^2-4\right)+5\right]\)
\(=\left(a-1\right)a\left(a+1\right)\left[\left(a-2\right)\left(a+2\right)+5\right]\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)\)
Vì (a-2)(a-1)a(a+1)(a+2) là tích 5 số nguyên liên tiếp và trong 5 số đó luôn tồn tại 1 số chia hết cho 5
=> (a-2)(a-1)a(a+1)(a+2) chia hết cho 5
Mà 5(a-1)a(a+1) chia hết cho 5
=> \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
+) Ta có a2 - a = a( a - 1 )
Vì a , a - 1 là hai số nguyên liên tiếp => Ít nhất 1 trong 2 số chia hết cho 2
=> a( a - 1 ) chia hết cho 2 hay a2 - a chia hết cho 2 ( đpcm )
+) Ta có a3 - a = a( a2 - 1 ) = a( a - 1 )( a + 1 ) ( sửa 3 thành a may ra tính được )
Vì a ; a - 1 ; a + 1 là 3 số nguyên liên tiếp => Ít nhất 1 trong 3 số chia hết cho 3
=> a( a - 1 )( a + 1 ) chia hết cho 3 hay a3 - a chia hết cho 3 ( đpcm )
Do số này có 4 chữ số và chia hết cho 5 , 2 , 3 , 9
=> Số này là số có 4 chữ số chia hết cho 90
=> Số đó là 1080
\(9^{1945}=9^{1944}.9=\left(9^2\right)^{972}.9=81^{972}.9\)
vì 81^972 có CSTC là 1=>9^1945 có CSTC là 9
\(2^{1930}=2^{1928}.2^2=\left(2^4\right)^{482}.4=16^{482}.4\)
=>16^482 có CSTC là 6=>16^482.4 có CSTC là 4=>2^1930 có CSTC là 4
=>9^1945-2^1930 có CSTC là 9-4=5 chia hết cho 5
Vậy ...
a) Ta có:
\(9^{1945}-2^{1930}=...9-...4\) (Dấu hiệu số cuối của 1 lũy thừa)
\(=...5⋮5\)
\(\Rightarrow9^{1945}-2^{1930}⋮5\)
Vậy \(9^{1945}-2^{1930}⋮5\left(đpcm\right)\)
b) Ta có:
\(4^{2010}+2^{2014}=...6+...4\)
\(=...10⋮10\)
\(\Rightarrow4^{2010}+2^{2014}⋮10\)
Vậy \(4^{2010}+2^{2014}⋮10\left(đpcm\right)\)
b: \(\dfrac{3x}{5}=\dfrac{y}{4}\)
nên \(\dfrac{x}{\dfrac{5}{3}}=\dfrac{y}{4}\)
=>x/5=y/12
Đặt x/5=y/12=k
=>x=5k; y=12k
Ta có: xy=180
=>60k^2=180
=>k^2=3
TH1: \(k=\sqrt{3}\)
=>\(x=5\sqrt{3};y=12\sqrt{3}\)
TH2: \(k=-\sqrt{3}\)
=>\(x=-5\sqrt{3};y=-12\sqrt{3}\)
a) 87 - 218 = ( 23 )7 - 218
= 221 - 218
= 218( 23 - 1 )
= 218.7
= 217.14 \(⋮\)14( đpcm )
b) 167 - 412 = ( 24 )7 - ( 22 )12
= 228 - 224
= 224( 24 - 1 )
= 224.15
= 223.30 \(⋮\)30( đpcm )
Mình chỉ làm được 1 cách thôi ;-;
Ta có :
\(10^{1989}-4=1000...0\left(1989cs0\right)-4\)
\(=1000....096\left(1987cs0\right)\)
Tổng các chữ số là :
1 + 0 + 9 + 6 = 16
Mà 16 không chia hết cho 3
=> A không chia hết cho 3
Tương tự : A cũng không chia hết cho 9 ( Do 16 không chia hết cho 9 )
\(A=10^{1989}-4\)
\(=\left(9+1\right)^{1989}-4\)
\(=B\left(9\right)+1^{1989}-4\)
\(=B\left(9\right)+1-4\)
\(=B\left(9\right)-3\)
Ta thấy \(B\left(9\right)⋮3\) ; \(3⋮3\)
nên \(A⋮3\)
\(B\left(9\right)⋮9\) nhưng 3 ko chia hết cho 9
nên \(A\)ko chia hết cho 9