Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: pi/2<x<pi
=>cosx<0
=>\(cosx=-\sqrt{1-\left(\dfrac{1}{5}\right)^2}=-\dfrac{2\sqrt{6}}{5}\)
\(sin2x=2\cdot sinx\cdot cosx=2\cdot\dfrac{1}{5}\cdot\dfrac{-2\sqrt{6}}{5}=\dfrac{-4\sqrt{6}}{25}\)
\(cos2x=2\cdot cos^2x-1=2\cdot\dfrac{24}{25}-1=\dfrac{48}{25}-1=\dfrac{23}{25}\)
\(tan2x=-\dfrac{4\sqrt{6}}{25}:\dfrac{23}{25}=-\dfrac{4\sqrt{6}}{23}\)
\(cot2x=1:\dfrac{-4\sqrt{6}}{23}=\dfrac{-23}{4\sqrt{6}}\)
b: \(sin\left(x-\dfrac{pi}{6}\right)=sinx\cdot cos\left(\dfrac{pi}{6}\right)-cosx\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=sinx\cdot\dfrac{\sqrt{3}}{2}-cosx\cdot\dfrac{1}{2}\)
\(=\dfrac{1}{5}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{-2\sqrt{6}}{5}\cdot\dfrac{1}{2}=\dfrac{\sqrt{3}+2\sqrt{6}}{10}\)
c: \(cos\left(x-\dfrac{pi}{3}\right)=cosx\cdot cos\left(\dfrac{pi}{3}\right)+sinx\cdot sin\left(\dfrac{pi}{3}\right)\)
\(=-\dfrac{2\sqrt{6}}{5}\cdot\dfrac{1}{2}+\dfrac{1}{5}\cdot\dfrac{1}{2}=\dfrac{-2\sqrt{6}+1}{10}\)
d: \(tan\left(x-\dfrac{pi}{4}\right)=\dfrac{tanx-tan\left(\dfrac{pi}{4}\right)}{1+tanx\cdot tan\left(\dfrac{pi}{4}\right)}\)
\(=\dfrac{tanx-1}{1+tanx}\)
\(=\dfrac{\dfrac{1}{-2\sqrt{6}}-1}{1+\dfrac{1}{-2\sqrt{6}}}=\dfrac{-25-4\sqrt{6}}{23}\)
a) Để tính sin2x, cos2x, tan2x và cot2x, chúng ta cần biết giá trị của cosx trước đã. Theo như bạn đã cho, cosx = -1/4. Vậy sinx sẽ bằng căn bậc hai của 1 - cos^2(x) = căn bậc hai của 1 - (-1/4)^2 = căn bậc hai của 1 - 1/16 = căn bậc hai của 15/16 = sqrt(15)/4. Sau đó, chúng ta có thể tính các giá trị khác như sau: sin2x = (2sinx*cosx) = 2 * (sqrt(15)/4) * (-1/4) = -sqrt(15)/8 cos2x = (2cos^2(x) - 1) = 2 * (-1/4)^2 - 1 = 2/16 - 1 = -14/16 = -7/8 tan2x = sin2x/cos2x = (-sqrt(15)/8) / (-7/8) = sqrt(15) / 7 cot2x = 1/tan2x = 7/sqrt(15) b) Để tính sin(x + 5π/6), chúng ta có thể sử dụng công thức sin(a + b) = sin(a)cos(b) + cos(a)sin(b). Với a = x và b = 5π/6, ta có: sin(x + 5π/6) = sin(x)cos(5π/6) + cos(x)sin(5π/6) = sin(x)(-sqrt(3)/2) + cos(x)(1/2) = (-sqrt(3)/2)sin(x) + (1/2)cos(x) c) Để tính cos(π/6 - x), chúng ta sử dụng công thức cos(a - b) = cos(a)cos(b) + sin(a)sin(b). Với a = π/6 và b = x, ta có: cos(π/6 - x) = cos(π/6)cos(x) + sin(π/6)sin(x) = (√3/2)cos(x) + 1/2sin(x) d) Để tính tan(x + π/3), chúng ta có thể sử dụng công thức tan(a + b) = (tan(a) + tan(b))/(1 - tan(a)tan(b)). Với a = x và b = π/3, ta có: tan(x + π/3) = (tan(x) + tan(π/3))/(1 - tan(x)tan(π/3))
a: pi/2<x<pi
=>sin x>0
=>\(sinx=\sqrt{1-\left(-\dfrac{1}{4}\right)^2}=\dfrac{\sqrt{15}}{4}\)
\(sin2x=2\cdot sinx\cdot cosx=2\cdot\dfrac{\sqrt{15}}{4}\cdot\dfrac{-1}{4}=\dfrac{-\sqrt{15}}{8}\)
\(cos2x=2\cdot cos^2x-1=2\cdot\dfrac{1}{16}-1=-\dfrac{7}{8}\)
\(tan2x=-\dfrac{\sqrt{15}}{8}:\dfrac{-7}{8}=\dfrac{\sqrt{15}}{7}\)
\(cot2x=1:\dfrac{\sqrt{15}}{7}=\dfrac{7}{\sqrt{15}}\)
b: sin(x+5/6pi)
=sinx*cos(5/6pi)+cosx*sin(5/6pi)
\(=\dfrac{\sqrt{15}}{4}\cdot\dfrac{-\sqrt{3}}{2}+\dfrac{1}{2}\cdot\dfrac{-1}{4}=\dfrac{-\sqrt{45}-1}{8}\)
c: cos(pi/6-x)
=cos(pi/6)*cosx+sin(pi/6)*sinx
\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{-1}{4}+\dfrac{1}{2}\cdot\dfrac{\sqrt{15}}{4}=\dfrac{-\sqrt{3}+\sqrt{15}}{8}\)
d: tan(x+pi/3)
\(=\dfrac{tanx+tan\left(\dfrac{pi}{3}\right)}{1-tanx\cdot tan\left(\dfrac{pi}{3}\right)}\)
\(=\dfrac{-\sqrt{15}+\sqrt{3}}{1+\sqrt{15}\cdot\sqrt{3}}=\dfrac{-\sqrt{15}+\sqrt{3}}{1+3\sqrt{5}}\)
a: 3/2pi<x<2pi
=>sin x<0
=>\(sinx=-\sqrt{1-\left(\dfrac{1}{6}\right)^2}=-\dfrac{\sqrt{35}}{6}\)
\(sin2x=2\cdot sinx\cdot cosx=2\cdot\dfrac{1}{6}\cdot\dfrac{-\sqrt{35}}{6}=\dfrac{-\sqrt{35}}{18}\)
\(cos2x=2\cdot cos^2x-1=2\cdot\dfrac{1}{36}-1=\dfrac{1}{18}-1=\dfrac{-17}{18}\)
\(tan2x=\dfrac{-\sqrt{35}}{18}:\dfrac{-17}{18}=\dfrac{\sqrt{35}}{17}\)
\(cot2x=1:\dfrac{\sqrt{35}}{17}=\dfrac{17}{\sqrt{35}}\)
b: \(sin\left(\dfrac{pi}{3}-x\right)\)
\(=sin\left(\dfrac{pi}{3}\right)\cdot cosx-cos\left(\dfrac{pi}{3}\right)\cdot sinx\)
\(=\dfrac{1}{2}\cdot\dfrac{-\sqrt{35}}{6}-\dfrac{1}{2}\cdot\dfrac{1}{6}=\dfrac{-\sqrt{35}-1}{12}\)
c: \(cos\left(x-\dfrac{3}{4}pi\right)\)
\(=cosx\cdot cos\left(\dfrac{3}{4}pi\right)+sinx\cdot sin\left(\dfrac{3}{4}pi\right)\)
\(=\dfrac{1}{6}\cdot\dfrac{-\sqrt{2}}{2}+\dfrac{-\sqrt{35}}{6}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{-\sqrt{2}-\sqrt{70}}{12}\)
d: tan(pi/6-x)
\(=\dfrac{tan\left(\dfrac{pi}{6}\right)-tanx}{1+tan\left(\dfrac{pi}{6}\right)\cdot tanx}\)
\(=\dfrac{\dfrac{\sqrt{3}}{3}-\sqrt{35}}{1+\dfrac{\sqrt{3}}{3}\cdot\left(-\sqrt{35}\right)}\)
a: pi<x<3/2pi
=>cosx<0
=>\(cosx=-\sqrt{1-\left(-\dfrac{3}{5}\right)^2}=-\dfrac{4}{5}\)
\(tanx=\dfrac{-3}{5}:\dfrac{-4}{5}=\dfrac{3}{4}\)
cot x=1:3/4=4/3
\(sin2x=2\cdot sinx\cdot cosx=2\cdot\dfrac{-3}{5}\cdot\dfrac{-4}{5}=\dfrac{24}{25}\)
\(cos2x=1-2\cdot sin^2x=1-2\cdot\left(-\dfrac{3}{5}\right)^2=\dfrac{7}{25}\)
\(tan2x=\dfrac{24}{25}:\dfrac{7}{25}=\dfrac{24}{7}\)
cot 2x=1:24/7=7/24
b: \(sin\left(x+\dfrac{pi}{3}\right)=sinx\cdot cos\left(\dfrac{pi}{3}\right)+sin\left(\dfrac{pi}{3}\right)\cdot cosx\)
\(=\dfrac{-3}{5}\cdot\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}\cdot\dfrac{-4}{5}=\dfrac{-3-4\sqrt{3}}{10}\)
a: \(sin\left(x-\dfrac{\Omega}{4}\right)=-\dfrac{\sqrt{2}}{2}\)
=>\(sin\left(x-\dfrac{\Omega}{4}\right)=sin\left(-\dfrac{\Omega}{4}\right)\)
=>\(\left[{}\begin{matrix}x-\dfrac{\Omega}{4}=-\dfrac{\Omega}{4}+k2\Omega\\x-\dfrac{\Omega}{4}=\Omega+\dfrac{\Omega}{4}+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k2\Omega\\x=\dfrac{3}{2}\Omega+k2\Omega\end{matrix}\right.\)
b: \(cos\left(x+\dfrac{\Omega}{4}\right)=cos\left(\dfrac{3}{4}\Omega\right)\)
=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{4}=\dfrac{3}{4}\Omega+k2\Omega\\x+\dfrac{\Omega}{4}=-\dfrac{3}{4}\Omega+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\Omega+k2\Omega\\x=-\Omega+k2\Omega\end{matrix}\right.\)
c: ĐKXĐ: \(\left\{{}\begin{matrix}2x< >\dfrac{\Omega}{2}+k\Omega\\x+\dfrac{\Omega}{3}< >\dfrac{\Omega}{2}+k\Omega\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< >\dfrac{\Omega}{4}+\dfrac{k\Omega}{2}\\x< >\dfrac{1}{6}\Omega+k\Omega\end{matrix}\right.\)
\(tan2x=tan\left(x+\dfrac{\Omega}{3}\right)\)
=>\(2x=x+\dfrac{\Omega}{3}+k\Omega\)
=>\(x=\dfrac{\Omega}{3}+k\Omega\)
d: ĐKXĐ: \(2x< >k\Omega\)
=>\(x< >\dfrac{k\Omega}{2}\)
\(cot2x=-\dfrac{\sqrt{3}}{3}\)
=>\(cot2x=cot\left(-\dfrac{\Omega}{3}\right)\)
=>\(2x=-\dfrac{\Omega}{3}+k\Omega\)
=>\(x=-\dfrac{\Omega}{6}+\dfrac{k\Omega}{2}\)
a: \(sinx=sin\left(\dfrac{\Omega}{4}\right)\)
=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{4}+k2\Omega\\x=\Omega-\dfrac{\Omega}{4}+k2\Omega=\dfrac{3}{4}\Omega+k2\Omega\end{matrix}\right.\)
b: cos2x=cosx
=>\(\left[{}\begin{matrix}2x=x+k2\Omega\\2x=-x+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k2\Omega\\3x=k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=k2\Omega\\x=\dfrac{k2\Omega}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{k2\Omega}{3}\)
c:
ĐKXĐ: \(x-\dfrac{\Omega}{3}< >\dfrac{\Omega}{2}+k\Omega\)
=>\(x< >\dfrac{5}{6}\Omega+k\Omega\)
\(tan\left(x-\dfrac{\Omega}{3}\right)=\sqrt{3}\)
=>\(x-\dfrac{\Omega}{3}=\dfrac{\Omega}{3}+k\Omega\)
=>\(x=\dfrac{2}{3}\Omega+k\Omega\)
d:
ĐKXĐ: \(2x+\dfrac{\Omega}{6}< >k\Omega\)
=>\(2x< >-\dfrac{\Omega}{6}+k\Omega\)
=>\(x< >-\dfrac{1}{12}\Omega+\dfrac{k\Omega}{2}\)
\(cot\left(2x+\dfrac{\Omega}{6}\right)=cot\left(\dfrac{\Omega}{4}\right)\)
=>\(2x+\dfrac{\Omega}{6}=\dfrac{\Omega}{4}+k\Omega\)
=>\(2x=\dfrac{1}{12}\Omega+k\Omega\)
=>\(x=\dfrac{1}{24}\Omega+\dfrac{k\Omega}{2}\)
a) \(sin\left(2x+\dfrac{\pi}{6}\right)+sin\left(x-\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=-sin\left(x-\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{3}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=\dfrac{\pi}{3}-x+k\pi\\2x+\dfrac{\pi}{6}=\pi-\dfrac{\pi}{3}+x+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{6}+k\pi\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{18}+\dfrac{k\pi}{3}\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
b) \(sin\left(2x-\dfrac{\pi}{3}\right)-cos\left(x+\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=cos\left(x+\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=sin\left(\dfrac{\pi}{6}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k\pi\\2x-\dfrac{\pi}{3}=\pi-\dfrac{\pi}{6}+x+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{7\pi}{6}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{\pi}{6}+\left(k+1\right)\pi\end{matrix}\right.\)
c: =>\(cos\left(x-\dfrac{pi}{6}\right)=-sin\left(2x+\dfrac{pi}{3}\right)\)
=>\(cos\left(x-\dfrac{pi}{6}\right)=sin\left(-2x-\dfrac{pi}{3}\right)\)
=>\(sin\left(-2x-\dfrac{pi}{3}\right)=sin\left(\dfrac{pi}{2}-x+\dfrac{pi}{6}\right)\)
=>\(sin\left(-2x-\dfrac{pi}{3}\right)=sin\left(-x+\dfrac{2}{3}pi\right)\)
=>\(\left[{}\begin{matrix}-2x-\dfrac{pi}{3}=-x+\dfrac{2}{3}pi+k2pi\\-2x-\dfrac{pi}{3}=pi+x-\dfrac{2}{3}pi+k2pi\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}-x=pi+k2pi\\-3x=\dfrac{2}{3}pi+k2pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-pi-k2pi\\x=-\dfrac{2}{9}pi-\dfrac{k2pi}{3}\end{matrix}\right.\)
a: sin x=-6/5=-1,2
mà -1<=sin x<=1
nên \(x\in\varnothing\)
b: sin3x=căn 3/2
=>3x=pi/3+k2pi hoặc 3x=2/3pi+k2pi
=>x=pi/9+k2pi/3 hoặc x=2/9pi+k2pi/3
c: \(sin\left(x+\dfrac{pi}{3}\right)=sin\left(\dfrac{3}{4}pi\right)\)
=>x+pi/3=3/4pi+k2pi hoặc x+pi/3=1/4pi+k2pi
=>x=5/12pi+k2pi hoặc x=-1/12pi+k2pi
d: =>sin(x+5/6pi)=5/4
mà sin(x+5/6pi) thuộc [-1;1]
nên \(x\in\varnothing\)
a)
$cos\left(x+\frac{\pi }{6}\right)=\frac{4}{5}cos\left(\frac{\pi }{6}\right)-\left(-\frac{3}{5}\right)sin\left(\frac{\pi }{6}\right)=\frac{4}{5}.\frac{\sqrt{3}}{2}+\frac{3}{5}.\frac{1}{2}=\frac{3+4\sqrt{3}}{10}$
b) $tan(x + \frac{\pi}{4}) = \frac{-3/5 + 1}{1 + (-3/5)(1)} = \frac{-2/5}{2/5} = -1$