K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

giải giúp mình: Cho Sinx+cosx=căn 2 . Tính sinx-cosx=? | Yahoo Hỏi & Đáp

Lớp 9 chưa học công thức biến đổi đâu nha ! 

21 tháng 6 2017

de tao giai cho lop 9 roi 

tk tao truov !

30 tháng 8 2018

\(A=a^3-b^3-ab\)

   \(=\left(a-b\right)\left(a^2+ab+b^2\right)-ab\)

   \(=a^2+ab+b^2-ab\) (vì \(a-b=1\))

   \(=a^2+b^2\)

   \(=a^2+\left(a-1\right)^2\)

   \(=2a^2-2a+1\)

  \(=2\left(a^2-a+\frac{1}{4}\right)+\frac{1}{2}\)

  \(=2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall a\)

Dấu "=" xảy ra: \(\Leftrightarrow a-\frac{1}{2}=0\Leftrightarrow a=\frac{1}{2}\)

\(b=a-1=\frac{1}{2}-1=-\frac{1}{2}\)

Vậy \(A_{min}=\frac{1}{2}\Leftrightarrow a=\frac{1}{2},b=-\frac{1}{2}\)

Chúc bạn học tốt.

20 tháng 8 2021

a) Đặt \(sinx+cosx=t\left(\left|t\right|\le\sqrt{2}\right)\Rightarrow sinx.cosx=\frac{t^2-1}{2}\)

=> pt có dạng: \(t=\sqrt{2}\left(t^2-1\right)\Leftrightarrow\sqrt{2}t^2-t-\sqrt{2}=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=\frac{-\sqrt{2}}{2}\\t=\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}sinx+cosx=\frac{-\sqrt{2}}{2}\\sinx+cosx=\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}sin\left(x+\frac{\pi}{4}\right)=\frac{-1}{2}\\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x+\frac{\pi}{4}=\frac{-\pi}{6}+2k\pi\\x+\frac{\pi}{4}=\frac{7\pi}{6}+2k\pi\\x+\frac{\pi}{4}=\frac{\pi}{2}+2k\pi\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-5\pi}{12}+2k\pi\\x=\frac{11\pi}{12}+2k\pi\\x=\frac{\pi}{4}+2k\pi\end{cases}}\left(k\inℤ\right)}\)

1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)

=1

2: \(sin^4x-cos^4x\)

\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)

\(=1-2\cdot cos^2x\)

 

4 tháng 7 2019

iu a ko 

28 tháng 7 2018

xem câu đầu ở đây nè https://olm.vn/hoi-dap/question/1248282.html

NV
3 tháng 3 2020

ĐKXĐ: ...

\(\Leftrightarrow x+3-x+2\sqrt{x\left(3-x\right)}=3\)

\(\Leftrightarrow\sqrt{x\left(3-x\right)}=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

b/ \(2sin^2x-5sinx+2=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sinx-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=2\left(l\right)\end{matrix}\right.\) \(\Rightarrow cosx=\sqrt{1-sin^2x}=\frac{\sqrt{3}}{2}\)

\(\Rightarrow sinx.cosx=\frac{\sqrt{3}}{4}\)