Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-
\(6sin^4x-2cos^4x=1\Leftrightarrow6sin^4x-2\left(1-sin^2x\right)^2-1=0\)
\(\Leftrightarrow6sin^4x-2\left(sin^4x-2sin^2x+1\right)-1=0\)
\(\Leftrightarrow4sin^4x+4sin^2x-3=0\)
\(\Leftrightarrow\left(2sin^2x+3\right)\left(2sin^2x-1\right)=0\)
\(\Leftrightarrow2sin^2x=1\Rightarrow sin^2x=\frac{1}{2}\Rightarrow cos^2x=\frac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}sin^4x=\frac{1}{4}\\cos^4x=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow C=\frac{1}{4}+3.\frac{1}{4}=1\)
--.-- \(-\pi>-\frac{3}{2}\pi\) mà
Chắc nhầm đề rồi, phải là \(-\pi>a>-\frac{3}{2}\pi\)mới đúng chứ
\(-\pi>a>-\frac{3}{2}\pi\Leftrightarrow\pi>a>\frac{1}{2}\pi\)
\(\cos a=-\frac{4}{5}\Rightarrow\sin a=\frac{3}{5}\)
\(\sin2a=2\sin a.\cos a=2.\frac{3}{5}.\frac{-4}{5}=-\frac{24}{25}\)
\(\cos2a=2\cos^2a-1=\frac{7}{25}\)
\(\sin\left(\frac{5\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}-a\right)=\cos a=-\frac{4}{5}\)
\(\sin\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{3}{5}-\frac{4}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}\)
\(\cos\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{-4}{5}-\frac{\sqrt{2}}{2}.\frac{3}{5}=-\frac{7\sqrt{2}}{10}\)
\(\Rightarrow\tan\left(a+\frac{\pi}{4}\right)=\frac{1}{7}\)
\(\cos^2\left(\frac{a}{2}\right)=\frac{1+\cos a}{2}=\frac{1}{10}\Leftrightarrow\left|\cos\frac{a}{2}\right|=\frac{\sqrt{10}}{10}\)
Mà \(\frac{\pi}{2}>\frac{a}{2}>\frac{\pi}{4}\)
\(\Rightarrow\cos\frac{a}{2}=\frac{\sqrt{10}}{10}\)
Câu 1:
\(\frac{\pi}{2}< a< \pi\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa< 0\end{matrix}\right.\)
Ta có: \(\frac{1}{cos^2a}=1+tan^2a\Rightarrow cos^2a=\frac{1}{1+tan^2a}\Rightarrow cosa=\frac{-1}{\sqrt{1+tan^2a}}=-\frac{3}{5}\)
\(\Rightarrow sina=cosa.tana=\frac{4}{5}\)
\(\Rightarrow P=\frac{\frac{16}{25}+\frac{3}{5}}{\frac{4}{5}-\frac{9}{25}}=\frac{31}{11}\)
Câu 2:
\(P=sin^4a-cos^4a=\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)=sin^2a-cos^2a\)
\(P=1-cos^2a-cos^2a=1-2cos^2a\)
Theo cmt ta có \(cos^2a=\frac{1}{1+tan^2a}\Rightarrow P=1-\frac{2}{1+tan^2a}=\frac{12}{13}\)
Bài 4:
$\sin a=\frac{1}{2}$ và $0< a< \pi$ nên $a=\frac{\pi}{6}$ hoặc $a=\frac{5}{6}\pi$
Nếu $a=\frac{\pi}{6}$ thì $\tan (2a-\frac{\pi}{2})+\sin a=\tan (2.\frac{\pi}{6}-\frac{\pi}{2})+\frac{1}{2}=\frac{-\sqrt{3}}{3}+\frac{1}{2}=\frac{3-2\sqrt{3}}{6}$
Nếu $a=\frac{5\pi}{6}$ thì:
\(\tan (2a-\frac{\pi}{2})+\sin a=\tan (2.\frac{5\pi}{6}-\frac{\pi}{2})+\frac{1}{2}=\frac{\sqrt{3}}{3}+\frac{1}{2}=\frac{3+2\sqrt{3}}{6}\)
Bài 3:
\(\tan a=\frac{-4}{7}=\frac{\sin a}{\cos a}\)
\(\Rightarrow \frac{\sin ^2a}{\cos ^2a}=\frac{16}{49}\Rightarrow \frac{1}{\cos ^2a}=\frac{65}{49}\) \(\Rightarrow \cos ^2a=\frac{49}{65}\)
Kết hợp điều kiện của $a$ suy ra $\cos a>0\Rightarrow \cos a=\frac{7}{\sqrt{65}}$
$\Rightarrow \sin a=\frac{-4}{7}\cos a=\frac{-4}{\sqrt{65}}$
Do đó:
\(\cos (2a-\frac{\pi}{2})=\cos 2a.\cos \frac{\pi}{2}+\sin 2a.\sin \frac{\pi}{2}\)
\(=(\cos ^2a-\sin ^2a).0+2\sin a\cos a.1=2\sin a\cos a=2.\frac{-4}{\sqrt{65}}.\frac{7}{\sqrt{65}}=\frac{56}{65}\)
\(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{7}}{4}\)
\(tana=\frac{sina}{cosa}=-\frac{3\sqrt{7}}{7}\) ; \(cota=\frac{1}{tana}=-\frac{\sqrt{7}}{3}\)
\(A=\frac{-\frac{6\sqrt{7}}{7}+\sqrt{7}}{-\frac{\sqrt{7}}{4}+\frac{3\sqrt{7}}{7}}=\frac{4}{5}\)