\(\dfrac{1}{3}\),tanα=-2tanβ

Tính A= sin(α+\(\dfr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2023

Để giải bài toán này, ta sẽ sử dụng các công thức và quy tắc trong lượng giác để tính toán.

Trước hết, ta có: sin(α+β) = sinα.cosβ + cosα.sinβ cos(α+β) = cosα.cosβ - sinα.sinβ

Đề bài cho α+β = 1313 và tanα = -2tanβ. Ta có thể suy ra các thông tin sau: tanα = -2tanβ => sinα/cosα = -2sinβ/cosβ => sinα.cosβ = -2sinβ.cosα

Bài toán yêu cầu tính A = sin(α+3π/8) . cos(α+π/8) + sin(β-5π/12) . sin(β-π/12)

Để tính A, ta sẽ thay các giá trị đã biết vào công thức trên:

A = sin(α+3π/8) . cos(α+π/8) + sin(β-5π/12) . sin(β-π/12) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12)) = (sinα . cos(3π/8) + cosα . sin(3π/8)) . (cosα . cos(π/8) - sinα . sin(π/8)) + (sinβ . cos(5π/12) - cosβ . sin(5π/12)) . (cosβ . cos(π/12) + sinβ . sin(π/12))

Tuy nhiên, để tính giá trị chính xác của A, cần biết thêm giá trị cụ thể của α và β. Trong câu hỏi của bạn, không có thông tin về α và β, do đó không thể tính toán giá trị của A.

27 tháng 9 2018

3.3 d)

\(\sin8x-\cos6x=\sqrt{3}\left(\sin6x+\cos8x\right)\\ \Leftrightarrow\sin8x-\sqrt{3}\cos8x=\sqrt{3}\sin6x+\cos6x\\ \Leftrightarrow\sin\left(8x-\dfrac{\pi}{3}\right)=\sin\left(6x+\dfrac{\pi}{6}\right)\\ \Leftrightarrow\left[{}\begin{matrix}8x-\dfrac{\pi}{3}=6x+\dfrac{\pi}{6}+k2\pi\\8x-\dfrac{\pi}{3}=\pi-\left(6x+\dfrac{\pi}{6}\right)+k2\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\dfrac{\pi}{7}\end{matrix}\right.\)

27 tháng 9 2018

3.4 a)

\(2sin\left(x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(-x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \)

Chia hai vế cho \(\sqrt{2^2+4^2}=2\sqrt{5}\)

Ta được:

\(\dfrac{1}{\sqrt{5}}cos\left(x-\dfrac{\pi}{4}\right)+\dfrac{2}{\sqrt{5}}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3}{4}\\ \)

Gọi \(\alpha\) là góc có \(cos\alpha=\dfrac{1}{\sqrt{5}}\)\(sin\alpha=\dfrac{2}{\sqrt{5}}\)

Phương trình tương đương:

\(cos\left(x-\dfrac{\pi}{4}-\alpha\right)=\dfrac{3}{4}\\ \Leftrightarrow x=\pm arscos\left(\dfrac{3}{4}\right)+\dfrac{\pi}{4}+\alpha+k2\pi\)

TL
1 tháng 12 2019

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

Từ đó suy ra f'(x)=0

a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0

d,f(x)=\(\frac{3}{2}\)=>f'(x)=0

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

28 tháng 4 2017

Tôi chẳng thể hiểu nổi

11 tháng 7 2018

\(1+\sin\dfrac{x}{2}\sin x-\cos\dfrac{x}{2}\sin^2x=2\cos^2\left(\dfrac{\Pi}{4}-\dfrac{x}{2}\right)\)

\(\Leftrightarrow1+\sin\dfrac{x}{2}\sin x-\cos\dfrac{x}{2}\sin^2x=2\left(\dfrac{\sqrt{2}}{2}\cos\dfrac{x}{2}+\dfrac{\sqrt{2}}{2}\sin\dfrac{x}{2}\right)^2\)

\(\Leftrightarrow1+2\sin^2\dfrac{x}{2}\cos\dfrac{x}{2}-\cos\dfrac{x}{2}\left(2\sin\dfrac{x}{2}\cos\dfrac{x}{2}\right)^2=1+2\sin\dfrac{x}{2}\cos\dfrac{x}{2}\)

\(\Leftrightarrow2\sin^2\dfrac{x}{2}\cos\dfrac{x}{2}-4\cos^3\dfrac{x}{2}\sin^2\dfrac{x}{2}-2\sin\dfrac{x}{2}\cos\dfrac{x}{2}=0\)

\(\Leftrightarrow2\sin\dfrac{x}{2}\cos\dfrac{x}{2}\left(\sin\dfrac{x}{2}-2\sin\dfrac{x}{2}\cos^2\dfrac{x}{2}-1\right)=0\)

\(\Leftrightarrow2\sin\dfrac{x}{2}\cos\dfrac{x}{2}\left(\sin\dfrac{x}{2}-2\sin\dfrac{x}{2}\left(1-\sin^2\dfrac{x}{2}\right)-1\right)=0\)

\(\Leftrightarrow2\sin\dfrac{x}{2}\cos\dfrac{x}{2}.\left(\sin\dfrac{x}{2}-1\right)\left(2\sin^2\dfrac{x}{2}+2\sin\dfrac{x}{2}+1\right)=0\)

 

\(5sin2a-6cosa=0\)

\(\Leftrightarrow sin2a=\dfrac{6}{5}cosa\)

\(\Leftrightarrow2\cdot sina\cdot cosa=\dfrac{6}{5}\cdot cosa\)

\(\Leftrightarrow cosa\left(2sina-\dfrac{6}{5}\right)=0\)

=>cosa=0 hoặc sina=3/5

hay \(a=\dfrac{\Pi}{2}+k\Pi\) hoặc \(\left[{}\begin{matrix}a=arcsin\left(\dfrac{3}{5}\right)+k2\Pi\\a=\Pi-arcsin\left(\dfrac{3}{5}\right)+k2\Pi\end{matrix}\right.\)

mà 0<a<pi/2

nên \(a=arcsin\left(\dfrac{3}{5}\right)\)

\(A=sina+sina+cota=2\cdot sina+cota\)

\(=\dfrac{38}{15}\)