Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+tan^2a=\frac{1}{cos^2a}\)
\(1+3^2=\frac{1}{cos^2a}\)
\(10=\frac{1}{cos^2a}\)
\(cos^2a=\frac{1}{10}\)
\(cosa=\pm\sqrt{\frac{1}{10}}\)
\(sin^2a+cos^2a=1\)
\(sin^2a+\frac{1}{10}=1\)
\(sin^2a=\frac{9}{10}\)
\(sina=+\sqrt{\frac{9}{10}}\)
Vì tan dương nên có hai trường hợp :
TH1 : cả sin và cos cùng dương :
\(A=\frac{sina\cdot cosa}{sin^2a-cos^2a}\)
\(=\frac{\sqrt{\frac{9}{10}}\cdot\sqrt{\frac{1}{10}}}{\frac{9}{10}-\frac{1}{10}}\)
\(=\frac{\frac{3}{10}}{\frac{8}{10}}\)
\(=\frac{3}{8}\)
TH2 : cả sin và cos cùng âm
\(A=\frac{sina\cdot cosa}{sin^2a-cos^2a}\)
\(=\frac{-\sqrt{\frac{9}{10}}\cdot-\sqrt{\frac{1}{10}}}{\frac{9}{10}-\frac{1}{10}}\)
\(=\frac{\frac{3}{10}}{\frac{8}{10}}\)
\(=\frac{3}{8}\)
b,ta có :\(\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a-sin^2a.cos^2a}{cos^2a-sin^2a.cos^2a}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)
=>\(\frac{sin^4a}{cos^4a}=\frac{sin^4a}{cos^4a}\)luon dung => dpcm
sin a = \(\frac{2}{3}\) => \(\sin^2a\) = \(\frac{4}{9}\) => \(\cos^2a\) = \(1-\frac{4}{9}=\frac{5}{9}\) => \(\cos a\) = \(\frac{\sqrt{5}}{3}\)
P = \(\left(\frac{\sin a}{\cos a}\right)^2\) - \(2\left(\frac{\cos a}{\sin a}\right)^2\)
P = \(\left(\frac{2}{3}:\frac{\sqrt{5}}{3}\right)^2-2\left(\frac{\sqrt{5}}{3}:\frac{2}{3}\right)^2\)
P = \(\left(\frac{2\sqrt{5}}{5}\right)^2-2\left(\frac{\sqrt{5}}{2}\right)^2\)
P = \(\frac{4}{5}-\frac{5}{2}\)
P = \(\frac{-17}{10}\)
a) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2a=1-\sin^2\alpha=1-\left(\frac{\sqrt{3}}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow\cos\alpha=\frac{1}{2}\)(do \(\cos\alpha>0\))
b) \(Q=\sin^2\alpha+\cot^2\alpha.\sin^2\alpha=\sin^2\alpha\left(1+\cot^2\alpha\right)\)\(=\sin^2\alpha\left(1+\frac{\cos^2\alpha}{\sin^2\alpha}\right)=\sin^2\alpha.\frac{\sin^2\alpha+\cos^2\alpha}{\sin^2\alpha}=1\)
a) \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}\)
~ ~ ~ Áp dụng đẳng thức \(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\) ~ ~ ~
a)
\(\left(\sin\alpha+\cos\alpha\right)^2-2\sin\alpha\cos\alpha-1\)
\(=\left(\sin\alpha+\cos\alpha\right)^2-\left(2\sin\alpha\cos\alpha+\sin^2\alpha+\cos^2\alpha\right)\)
\(=\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)^2\)
= 0
b)
\(\left(\sin\alpha-\cos\alpha\right)^2+2\sin\alpha\cos\alpha+1\)
\(=\left(\sin\alpha-\cos\alpha\right)^2+2\sin\alpha\cos\alpha+\sin^2\alpha+\cos^2\alpha\)
\(=\left(\sin\alpha-\cos\alpha\right)^2+\left(\sin\alpha+\cos\alpha\right)^2\)
\(=2\left(\sin^2\alpha+\cos^2\alpha\right)\)
= 2
c)
\(\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2+2\)
\(=2\left(\sin^2\alpha+\cos^2\alpha\right)+2\)
= 4
d)
\(\sin^2\alpha\cot^2\alpha+\cos^2\alpha\tan^2\alpha\)
\(=\left(\sin\times\dfrac{\cos}{\sin}\right)^2+\left(\cos\times\dfrac{\sin}{\cos}\right)^2\)
= 1
Làm tiếp nha:(bạn tự CM công thức)
\(\cot^2\alpha=\frac{1}{\sin^2\alpha}-1=\frac{9}{4}-1=\frac{5}{4}\Rightarrow\tan^2\alpha=\frac{4}{5}\Rightarrow B=\frac{4}{5}-2.\frac{5}{4}=\frac{-17}{10}\)