K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

\(A=1+3+3^2+3^3+3^4+...+3^{2015}\)

\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)

\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{2012}\left(1+3+3^2+3^3\right)\)

\(=\left(1+3+3^2+3^3\right)\left(1+3^4+...+3^{2012}\right)\)

\(=40\left(1+3^4+...+3^{2012}\right)\)\(⋮\)\(5\)

\(B=2+2^2+2^3+...+2^{2016}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{2013}+2^{2014}+2^{2015}+2^{2016}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+..+2^{2013}\left(1+2+2^2+2^3\right)\)

\(=\left(1+2+2^2+2^3\right)\left(2+2^5+...+2^{2013}\right)\)

\(=15\left(2+2^5+...+2^{2013}\right)\)\(⋮\)\(15\)

6 tháng 6 2016

ta có: S=( 31+32+33+34+35+36)+...+32016

S= 31(1+3+32+33+34+35) +...+ 32011(1+3+32+33+34+35)

S= 31.364+...+ 32011.364

S= 364. ( 31+...+32011 )

S= 26.14.(31+...+32011) chia hết cho 26

vậy S chia hết cho 26

21 tháng 12 2017

A = 31 + 32 +33 + 34 +.....+32015+ 32016

A = (31 + 32) +(33 + 34) +.....+ (32015+ 32016)

A = 3(1+3) + 32(1+3) + .....+ 32015(1+3)

A = 3.4 +32.4 +....... + 32015.4

A = 4(3 +32 +....+ 32015) chia hết cho 4

===================================================

A =31 + 32 +33 + 34 + 35 +36 +.....+32014 + 32015+ 32016

A = (31 + 32 +33 ) +(34 + 35 +36) +.....+ (32014 + 32015+ 32016)

A = 3(1+3+32) + 34(1+3+32) + .....+ 32014(1+3+32)

A = 3.13 +34.13 +....... + 32014.13

A = 13.(3 +34 +....+ 32014) chia hết cho 13

20 tháng 12 2016

 Ta có A = [ (- 1) + 2 ] + [ (- 2) + 3 ) ] + [ (-3) + 4 ] + ..... + [ (- 2015) + 2016 ]

= 1 + 1 + 1 + ..... + 1 ( có [ ( 2016 - 1 ) + 1 ] : 2 = 1008 chữ số 1 )

= 1x1008 = 1008

Vì 1008 chia hết cho 3 => A chia hết cho 3 ( điều phải chứng minh )

12 tháng 8 2018

a) Đặt biểu thức trên là A, ta có:

A = 21 + 22 + 23 + 24 + ... + 299 + 2100

=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)

=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)

=> A = 21.3 + 23.3 + ... + 299.3

=> A = 3(21 + 23 + ... + 299)

=> A ⋮ 3

\(26=13.2\)

\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)

\(s=3.13+3^413+.....+3^{2012}.13\)

\(s=13.\left(3+3^4+....+3^{2012}\right)\)

\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)

\(s=3.4+3^3.4+....+3^{2015}.4\)

\(s=4.\left(3+3^3+.....+3^{2015}\right)\)

\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)

\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)

\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)

9 tháng 1 2016

chia cho mấy mới làm chớ

9 tháng 1 2016

phân tích số 26=13.2

ghép 3 số hạng ta được:3(1+3+9)+3^4(1+3+9)+...+3^2012(1+3+9)

                                   =3.13+3^4.13+...+^2012.13

                                   =13(3+3^4+...+3^2012)

vậy dãy số đó chia hết cho 13.

ghép 2 số hạng ta được:3(1+3)+3^3(1+3)+...+3^2015(3+1)

                                  =3.4+3^3.4+...+3^2015.4

                                  =4(3+3^3+...+3^2015)

 vậy dãy số đó chia hết cho 2.

vì dãy số đó chia hết cho cả 2 và 13.

vậy dãy số đó chia hết cho 26.

 

SCSH: (32015- 1) : 2 = 0

Tổng: (32015+ 1) : 2 = 2

Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

k nhé

3 tháng 1 2019

chưng minh mà anh