Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tổng :S=3^0+3^2+3^4+3^6+...........................+3^2014.tính S và chứng minh S chia hết cho 7
\(S=3^0+3^2+3^4+3^6+...+3^{2014}\)
\(=1+3^2+3^4+3^6+...+3^{2014}\)
\(=\left(1+3^2\right)+3^4\left(1+3^2\right)+...+3^{2012}\left(1+3^2\right)\)
\(=7+3^4.7+...+3^{2012}.7=7\left(1+3^4+...+3^{2012}\right)⋮7\)
Vậy ta có đpcm
S = 30 + 32 + 34 + .... + 32002
9S = 32 + 34 + .... + 32002 + 32004
9S - S = (32 + 34 + .... + 32002 + 32004) - (30 + 32 + 34 + .... + 32002)
8S = 32004 - 30
S = \(\frac{3^{2004}-1}{8}\)
S=(3^1+3^2+3^3)+(3^4+3^5+3^6)+...+(3^2000+3^2001+3^2002)
S=3.(1+3+3^2)+3^4.(1+3+3^2)+...+3^2000.(1+3+3^2)
S=3.14+3^4.14+...+3^2000.14
S=(3+3^4+...+3^2000).14
=> S chia hết cho 7
a)nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7
ta có:32004-1=(36)334-1=(36-1).M=7.104.M
=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7
Nhân S với 3^2 ta được 9S=3^2+3^4+....+3^2002+3^2004
=>9S-S=(3^2+3^4+....+3^2004)-(3^0+3^2+....+3^2002)
=>8S=3^2004-1
=>S=(3^2004-1)/8
b,ta có S là sô nguyên nên fải chung minh 3^2004-1chia hết cho 7
ta có : 3^2004-1=(3^6)^334-1=(3^6-1).M=728.M=7.104.M
=>3^2004 chia hết cho 7. Mặt khác (7;8)=1 nên S chia hết cho 7
S=3^0+3^2+3^4+3^6+...+3^2002
=1+3^2+3^4+3^6+...+3^2002
9S=3^2+3^4+3^6+3^8+...+3^2004
9S-S=3^2+3^4+3^6+3^8+...+3^2004-1-3^2-3^4-3^6-...-3^2002
8S=3^2004-1
S=(3^2004-1):8
S=3^0+3^2+3^4+3^6+...+3^2002
=1+3^2+3^4+3^6+...+3^2002
=(1+3^2+3^4)+(3^6+3^8+3^10)+...+(3^1998+3^2000+3^2002)
=91+3^6(1+3^2+3^4)+...+3^1998(1+3^2+3^4)
91(1+3^6+...+3^1998)
ma 91 chia het cho 7
=> 91(1+3^6+...+3^1998) chia het cho 7
vay S chia het cho 7
chtt
các bạn tick mình cho tròn 220 điểm hỏi đáp với