K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2016

\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{49}+3^{49}\right)\)

\(S=4+3^2.\left(1+3\right)+3^4.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)

\(S=4+3^2.4+3^4.4+...+3^{48}.4\)

\(S=4.\left(1+3^2+3^4+...+3^{48}\right)\) CHIA HET CHO 4

\(\Leftrightarrow\)S chia het cho 4 (dpcm)

16 tháng 11 2016

Ta có \(S=1+3^2+3^4+...+3^{98}\Rightarrow3^2.S=3^2+3^4+3^6+...+3^{100}\)

\(=\left(S-1\right)+3^{100}\)

\(\Rightarrow9S=S+3^{100}-1\Rightarrow S=\frac{3^{100}-1}{8}.\)

Ta thấy \(S=1+3^2+3^4+...+3^{98}=\left(1+3^{98}\right)+\left(3^2+3^4\right)+...+\left(3^{94}+3^{96}\right)\)

Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...

Tóm lại S có tận cùng là 0 hay S chia hết cho 10. 

29 tháng 9 2015

cho S = 1+3+32+ 33 + 3+ .......+ 399

Tổng S có tổng cộng 100 số hạng

S = 1+3+32+ 33 + 3+ .......+ 399 

= (1+3) +(32+ 33) + (3+35) .......(388+ 399 )  có 50 nhóm

= 4 + 32.(1+3)+34(1+3)+........+388(1+3)

= 4+ 32.4+34.4+........+388.4

= 4 (1+ 32+34+........+388) chia hết cho 4

b)

= (1+3 + 32+ 33) + (3+35+36+37) .......(386+387+388+ 399 )  có 100:4 = 25 nhóm

=  (1+3 + 32+ 33) + 34.(1+3 + 32+ 33) .......386.(1+3 + 32+ 33

=  40+ 34.40 .......386.40

= 40 ( 1 +34+ 38+....+386) chia hết cho 40

= 4+ 32.4+34.4+........+388.4

= 4 (1+ 32+34+........+388) chia hết cho 4

bạn trả lời giúp mình câu hỏi này với , mình đang rất gấp , đè bài y như thế này

31 tháng 1 2016

ta co: S=1+3+32+33+...+348+349

             S=(1+3)+(32+33)+...+(348+349)

             S=4+32.(1+3)+...+348.(1+3)

          S=4+4.(32+...+348)

       Vi 4 chia het cho 4

=>S chia het cho 4

 

21 tháng 11 2018

Bài 1 

1+2-3-4+5+6-7-8+9+10-....+2006-2007-2008+2009

=1+(2-3-4+5)+(6-7-8+9)+...+(2006-2007-2008+2009)

=1+0+0+....+0

=1

21 tháng 11 2018

Bài 2

Ta có: S=3^1+3^2+...+3^2015

3S=3^2+3^3+...+3^2016

=> 3S-S=(3^2+3^3+...+3^2016)-(3^1+3^2+...+3^2015)

2S=3^2016-3^1

S=\(\frac{3^{2016}-3}{2}\)

Ta có \(3^{2016}=3^{4K}=\left(3^4\right)^K=\left(81\right)^K=.....1\)

=> \(S=\frac{3^{2016}-3}{2}=\frac{....1-3}{2}=\frac{....8}{2}\)

=> S có 2 tận cùng 4 hoặc 9

mà S có số hạng lẻ => S có tận cùng là 9

Ta có : 2S=3^2016-3(=)2S+3=3^2016 => X=2016

24 tháng 10 2019

minh dang can gap