K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
26 tháng 10 2021

\(S=1+2+2^2+2^3+...+2^9\)

\(2S=2+2^2+2^3+...+2^{10}\)

\(2S-S=\left(2+2^2+2^3+...+2^{10}\right)-\left(1+2+2^2+2^3+...+2^9\right)\)

\(S=2^{10}-1< 2^{10}=2^2.2^8=4.2^8< 5.2^8\)

14 tháng 7 2023

\(S=1+2+2^2+2^3+...+2^9\) 

Đặt \(2S=2+2^2+2^3+2^4+...+2^{10}\) 

\(2S-S=2^{10}-1\) hay \(S=2^{10}-1< 2^{10}\)

\(\Rightarrow\) \(2^{10}=2^2.2^8< 5.2^8\) 

Vậy \(S< 5.2^8\)

\(#Tuyết\)

2S=2+2^2+...+2^10

=>S=2^10-1=1023

5*2^8=256*5=1280

=>S<5*2^8

10 tháng 9 2023

�=1+2+22+...+29

2�=2(1+2+22+...+210)

2�=2+22+23+...+29

2�−�=(2+22+23+...+210)−(1+2+22+...+29)

\(S=2^{10}-1=2^2.2^8-1=4.2^8-1

 

HT

11 tháng 9 2023

�=1+2+22+...+29

2�=2(1+2+22+...+210)

2�=2+22+23+...+29

2�−�=(2+22+23+...+210)−(1+2+22+...+29)

\(S=2^{10}-1=2^2.2^8-1=4.2^8-1

18 tháng 12 2015

S = 1 + 2 + 22 + ... + 29

=> 2S = 2 + 22 + ... + 210

=> 2S - S = 210 - 1

=> S = 210 - 1

Ta có : 210 = 22.28

=> 22.28 - 1 = 4.28 - 1 < 5.28

Vậy S < 5.28

Có : \(S=1+2+2^2+2^3+....+2^{99}\)

\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)

\(\Rightarrow S=2^{100}-1< 2^{100}\)

Vậy \(S< 2^{100}\)

 S=1+2+22+23+....+299

⇒2S=2+22+23+....+2100

⇒2S−S=2100-1

S=2100-1

vì 2100 -1<2100

⇒S<2100

 

17 tháng 2 2020

Gợi ý: Bạn tính 2S sau đó bạn lấy 2S trừ S nhé!!

*Do mình lười ghi quá!! Hihi tk giúp mình với bạn nhé!!*

25 tháng 3 2017

S > 1/3

25 tháng 3 2017

ta thấy \(\frac{1}{20}\)<\(\frac{1}{3}\)

thì \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{20}\)+...+\(\frac{1}{20}\)<\(\frac{1}{3}\)

vậy \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{3}\)

\(S=2^0+2+2^2+...+2^9\)

Ta có phép tính : \(5\times28=140\)

Mà ta thấy : \(2^9>140\Rightarrow2^0+2+2^2+...+2^9>140\)

\(\Rightarrow S>5.28\)

26 tháng 7 2019

Ta có:

\(5.28=140\)

Mà \(2^9=512>140\)

\(\Rightarrow2^0+2^1+2^2+2^3+...+2^9>5.28\)

~ Rất vui vì giúp đc bn ~

Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)

\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)

\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)

29 tháng 6 2021

thank you