\(S=1-2+2^2-2^3+2^{\text{4}}-2^5+...+2^{2013}-2^{2014}\)Khi đó \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

\(-S=2-1+2^3-2^2+...+2^{2014}-2^{2013}\)

\(=1+2^2\left(2-1\right)+...+2^{2013}\left(2-1\right)=1+2^2+..+2^{2013}\)

Mình chỉ làm tới đây thôi tự làm tiếp có gì kb đi

1 tháng 11 2017

đó giúp mk đi màkhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroikhocroi

à, mk quên chưa nói là ai giúp mk sẽ được luôn 2SP đóvuiok

giúp mk nhaok

cảm ơn nhiều!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2 tháng 11 2017

những thánh giỏi toán ơi giúp mk được ko

mk năn nỉ đókhocroi

6 tháng 3 2018

a) Giải

Ta có: \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}+\dfrac{1}{2^{2013}}\)

\(\Rightarrow2S=\dfrac{2}{2}+\dfrac{2}{2^2}+\dfrac{2}{2^3}+...+\dfrac{2}{2^{2012}}+\dfrac{2}{2^{2013}}\)

\(2S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}\)

\(\Rightarrow2S-S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{2012}}-\dfrac{1}{2^{2013}}\)

\(\Rightarrow S=1-\dfrac{1}{2^{2013}}\)
\(\Rightarrow S=\dfrac{2^{2013}-1}{2^{2013}}\)

6 tháng 3 2018

b) Giải

Từ \(A=\dfrac{2011^{2012}+1}{2011^{2013}+1}\)

\(\Rightarrow2011A=\dfrac{2011^{2013}+20111}{2011^{2013}+1}=\dfrac{2011^{2013}+1+2010}{2011^{2013}+1}=1+\dfrac{2010}{2011^{2013}+1}\)

Từ \(B=\dfrac{2011^{2013}+1}{2011^{2014}+1}\)

\(\Rightarrow2011B=\dfrac{2011^{2014}+2011}{2011^{2014}+1}=\dfrac{2011^{2014}+1+2010}{2011^{2014}+1}=1+\dfrac{2010}{2011^{2014}+1}\)

Vì 20112013 + 1 < 20112014 + 1 và 2010 > 0

\(\Rightarrow\dfrac{2010}{2011^{2013}+1}>\dfrac{2010}{2011^{2014}+1}\)

\(\Rightarrow2011A>2011B\)

\(\Rightarrow A>B\)

Vậy A > B.

23 tháng 4 2017

Câu 2:

\(A=2014+\dfrac{2014}{1+2}+\dfrac{2014}{1+2+3}+...+\dfrac{2014}{1+2+3+...+2013}\)

\(=2014\left(1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+2013}\right)\)

\(=2014\left(1+\dfrac{1}{2\left(2+1\right)}.2+\dfrac{1}{3\left(3+1\right)}.2+...+\dfrac{1}{2013\left(2013+1\right)}.2\right)\)

\(=2014\left(\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{2013.2014}\right)\)

\(=4028\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2013.2014}\right)\)

Bạn tự tính nốt nhé

23 tháng 4 2017

1)

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2011\cdot2012}\left(1\right)\)\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2011\cdot2012}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\\ =\dfrac{1}{1}-\dfrac{1}{2012}< 1\left(2\right)\)

Từ (1) và (2) ta có: A < 1

2)

\(A=2014+\dfrac{2014}{1+2}+\dfrac{2014}{1+2+3}+...+\dfrac{2014}{1+2+3+...+2013}\\ =2014\cdot\left(\dfrac{1}{1}+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+2013}\right)\\ =2014\cdot\left(\dfrac{1}{\left(1\cdot2\right):2}+\dfrac{1}{\left(2\cdot3\right):2}+\dfrac{1}{\left(3\cdot4\right):2}+...+\dfrac{1}{\left(2013\cdot2014\right):2}\right)\\ =2014\cdot\left(\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{2013\cdot2014}\right)\\ =2014\cdot2\cdot\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2013\cdot2014}\right)\\ =4028\cdot\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\right)\\ =4028\cdot\left(1-\dfrac{1}{2014}\right)\\ =4028\cdot\dfrac{2013}{2014}\\ =4026\)

3)

Để A là số nguyên thì \(6n+42⋮6n\Rightarrow42⋮6n\Rightarrow6n\inƯ\left(42\right)\)

\(Ư\left(42\right)=\left\{1;2;3;6;7;14;21;42\right\}\)

6n 1 2 3 6 7 14 21 42
n \(\dfrac{1}{6}\) \(\dfrac{1}{3}\) \(\dfrac{1}{2}\) 1 \(\dfrac{7}{6}\) \(\dfrac{7}{3}\) \(\dfrac{7}{2}\) 7

Vì n là số tự nhiên nên n = 1 hoặc n = 7

4)

\(A=\dfrac{17^{18}+1}{17^{19}+1}< \dfrac{17^{18}+1+16}{17^{19}+1+16}=\dfrac{17^{18}+17}{17^{19}+17}=\dfrac{17\cdot\left(17^{17}+1\right)}{17\cdot\left(17^{18}+1\right)}=\dfrac{17^{17}+1}{17^{18}+1}=B\)

Vậy A<B

25 tháng 2 2017

2.a) Vào question 126036

b) Vào question 68660

23 tháng 4 2019

a)\(x\times\left(-2\right)-9\div\left(-3\right)=\left(2-7\right)^2\)

\(x\times\left(-2\right)-\left(-3\right)=\left(-5\right)^2\)

\(x\times\left(-2\right)-\left(-3\right)=25\)

\(x\times\left(-2\right)=25+\left(-3\right)\)

\(x\times\left(-2\right)=22\)

\(x=22:\left(-2\right)\)

\(x=\left(-11\right)\)

Vậy : x = ( -11 )

b) ( - 1) . ( -2 ) . (-3 ) ..... ( -2014)

Dãy số trên có tất cả ( 2014 - 1 ) : 1 + 1 = 2014 số hạng

=> a là 1 số nguyên dương 

=> a > 0 là đúng < vì số nguyên dương lớn hơn 0 và tích trên không thể bằng không >

c) \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{2013^2}\)

Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

              ....................

              \(\frac{1}{2013^2}< \frac{1}{2012.2013}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{2013}\)

\(\Rightarrow A< \frac{3}{4}-\frac{1}{2013}< \frac{3}{4}\)

Vậy : \(A< \frac{3}{4}\)

            

23 tháng 4 2019

cảm ơn mọi người nhiều ạ

30 tháng 4 2018

https://hoc24.vn/hoi-dap/question/598367.html