K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

Chọn đáp án A

10 tháng 2 2019

Chọn đáp án A

4 tháng 4 2019

30 tháng 3 2017

Đáp án B

Pt pháp tuyến của mặt phẳng cần tìm là  n ⇀ = d , ⇀ ∆ ⇀ = (1;0;1)

Pt có dạng: x+z+D=0

Khoảng cách từ O (-1;1;-2) đến mp là   2

⇒ D=1

Pt có dạng : x+z+1=0

19 tháng 1 2017

19 tháng 8 2019

Đáp án D.

6 tháng 10 2017

NV
30 tháng 5 2020

3.

\(x.f'\left(x\right)+\left(x+1\right)f\left(x\right)=3x^2.e^{-x}\)

\(\Leftrightarrow x.e^x.f'\left(x\right)+\left(x+1\right).e^x.f\left(x\right)=3x^2\)

\(\Leftrightarrow\left[x.e^x.f\left(x\right)\right]'=3x^2\)

Lấy nguyên hàm 2 vế:

\(\Rightarrow x.e^x.f\left(x\right)=\int3x^2dx=x^3+C\)

\(f\left(1\right)=\frac{1}{e}\Rightarrow1.e.\frac{1}{e}=1^3+C\Rightarrow C=0\)

\(\Rightarrow x.e^x.f\left(x\right)=x^3\Rightarrow f\left(x\right)=\frac{x^2}{e^x}\)

\(\Rightarrow f\left(2\right)=\frac{4}{e^2}\)

4.

Gọi (Q) là mặt phẳng chứa d và vuông góc (P)

(Q) nhận \(\overrightarrow{n_{\left(Q\right)}}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_d}\right]=\left(-3;2;1\right)\) là 1 vtpt

Phương trình (Q):

\(-3x+2\left(y+1\right)+1\left(z-2\right)=0\Leftrightarrow-3x+2y+z=0\)

d' là hình chiếu của d lên (P) nên là giao tuyến của (P) và (Q) có pt thỏa mãn:

\(\left\{{}\begin{matrix}x+y+z+3=0\\-3x+2y+z=0\end{matrix}\right.\)

\(\Rightarrow d'\) đi qua \(A\left(0;3;-6\right)\) và nhận \(\overrightarrow{u_{d'}}=\left[\overrightarrow{n_{\left(Q\right)}};\overrightarrow{n_{\left(P\right)}}\right]=\left(1;4;-5\right)\) là 1 vtcp

Phương trình chính tắc d': \(\frac{x}{1}=\frac{y-3}{4}=\frac{z+6}{-5}\)

NV
30 tháng 5 2020

1/

Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=\left(2x+1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=x^2+x\end{matrix}\right.\)

\(\Rightarrow I=\left(x^2+x\right)lnx|^3_e-\int\limits^3_e\left(x+1\right)dx=\left(x^2+x\right)lnx|^3_e-\left(\frac{1}{2}x^2+x\right)|^3_e\)

\(=12ln3-\frac{e^2}{2}-\frac{15}{2}\)

2/

Đặt \(z=x+yi\)

\(\left|x+1+\left(y-1\right)i\right|=\left|x+\left(y-3\right)i\right|\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2=x^2+\left(y-3\right)^2\)

\(\Leftrightarrow2x+4y-7=0\Rightarrow x=\frac{7}{2}-2y\)

Ta có: \(A=\left|z-i\right|=\left|x+\left(y-1\right)i\right|=\sqrt{x^2+\left(y-1\right)^2}\)

\(=\sqrt{\left(\frac{7}{2}-2y\right)^2+\left(y-1\right)^2}=\sqrt{5y^2-16y+\frac{53}{4}}=\sqrt{5\left(y-\frac{8}{5}\right)^2+\frac{9}{20}}\ge\sqrt{\frac{9}{20}}\)

\(\Rightarrow\left|z-i\right|_{min}=\sqrt{\frac{9}{20}}\)