Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So Sánh
a.\(\dfrac{1}{4}\sqrt{8}\) và \(\dfrac{2}{3}\sqrt{12}\)
Có:\(\dfrac{1}{4}\sqrt{8}\) và \(\dfrac{2}{3}\sqrt{12}\)
= \(\dfrac{1}{4}.2\sqrt{2}\) và \(\dfrac{2}{3}.2\sqrt{3}\)
=\(\dfrac{\sqrt{2}}{2}\)và \(\dfrac{4\sqrt{3}}{3}\)
=> \(\dfrac{1}{4}\sqrt{8}< \dfrac{2}{3}\sqrt{12}\)
b. \(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}\)và \(6\sqrt{\dfrac{1}{35}}\)
Có \(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}\) và \(6\sqrt{\dfrac{1}{35}}\)
=\(\dfrac{5}{2}.\dfrac{\sqrt{6}}{6}\) và \(6.\dfrac{\sqrt{35}}{35}\)
=\(\dfrac{5\sqrt{6}}{12}\) và \(\dfrac{6\sqrt{35}}{35}\)
=> \(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{35}}\)
c. \(\dfrac{1}{6}\sqrt{18}\) và \(\dfrac{1}{2}\sqrt{2}\)
=\(\dfrac{1}{6}.3\sqrt{2}\) và \(\dfrac{1}{2}\sqrt{2}\)
=\(\dfrac{\sqrt{2}}{2}\) và \(\dfrac{\sqrt{2}}{2}\)
=> \(\dfrac{1}{6}\sqrt{18}=\dfrac{1}{2}\sqrt{2}\)
a,\(\dfrac{1}{4}\sqrt{8}=\dfrac{1}{\sqrt{2}}\)
\(\dfrac{2}{3}\sqrt{12}=\dfrac{4}{\sqrt{3}}\)
=> \(\dfrac{1}{4}\sqrt{8}< \dfrac{2}{3}\sqrt{12}\)
a: \(=\left(\dfrac{\sqrt{2}}{4}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\cdot10\sqrt{2}\right)\cdot8\)
\(=2\sqrt{2}-12\sqrt{2}+64\sqrt{2}\)
\(=54\sqrt{2}\)
b: \(=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9\)
c: \(=\dfrac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
d: \(=\sqrt{\dfrac{4-2\sqrt{3}}{4}}+\dfrac{1-\sqrt{3}}{2}\)
\(=\dfrac{\sqrt{3}-1+1-\sqrt{3}}{2}=0\)
Lời giải:
a)
Sử dụng pp biến đổi tương đương:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)
\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)
\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)
\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)
\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)
\(\Leftrightarrow (ab-1)(a-b)^2\geq 0\) (luôn đúng với mọi $ab\geq 1$)
Ta có đpcm.
b) Áp dụng công thức của phần a ta có:
\(\frac{1}{a^4+1}+\frac{1}{b^4+1}\geq \frac{2}{1+(ab)^2}\)
Tiếp tục áp dụng công thức phần a: \(\frac{1}{1+(ab)^2}+\frac{1}{1+b^4}\geq \frac{2}{1+ab^3}\)
Do đó:
\(\frac{1}{a^4+1}+\frac{3}{b^4+1}\geq \frac{4}{1+ab^3}\)
Hoàn toàn tương tự: \(\frac{1}{b^4+1}+\frac{3}{c^4+1}\geq \frac{4}{1+bc^3}; \frac{1}{c^4+1}+\frac{3}{a^4+1}\geq \frac{4}{1+ca^3}\)
Cộng theo vế các BĐT trên thu được:
\(4\left(\frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\right)\geq 4\left(\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\right)\)
\(\Leftrightarrow \frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\geq \frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c=1$
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\geq \frac{16}{3x+3y+2z}\)
\(\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\geq \frac{16}{3x+2y+3z}\)
\(\frac{1}{z+y}+\frac{1}{z+y}+\frac{1}{x+z}+\frac{1}{x+y}\geq \frac{16}{2x+3y+3z}\)
Cộng theo vế:
\(\Rightarrow 4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\geq 16\left(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\right)\)
\(\Rightarrow \frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\leq \frac{4.6}{16}=\frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)
\(S=\dfrac{1}{3}+\dfrac{1}{3+3}+\dfrac{1}{3+3+4}+\dfrac{1}{3+3+4+5}+\dfrac{1}{3+3+4+5+6}+...+\dfrac{1}{3+3+4+...+n}\)
Tìm đc n lấy n-1 là ra KQ
mà hình như dề sai 200->190 ms lm đc