K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2020

S = 51 + 52 + 53 + ... + 596

5S = 5( 51 + 52 + 53 + ... + 596 )

      = 52 + 53 + 54 + ... + 597

5S  - S = ( 52 + 53 + 54 + ... + 597 ) - ( 51 + 52 + 53 + ... + 596 )

<=> 4S = 52 + 53 + 54 + ... + 597 - 51 - 52 - 53 - ... - 596

<=> 4S = 597 - 5

<=> S = \(\frac{5^{97}-5}{4}\)

5 tháng 7 2020

Ta dễ dàng nhận thấy tất cả các số đều có tận cùng là 5

Suy ra nếu số hạng chẵn thì số tận cùng là 0 

nếu số số hạng lẻ thì số tận cùng là 5

Có tất cả số số hạng là : (96-1):1+1=96

Vậy số tận cùng của dãy trên là 0

6 tháng 10 2020

a) Ta có: \(S=1+4+4^2+...+4^{100}\)

\(\Rightarrow4S=4+4^2+4^3+...+4^{101}\)

\(\Leftrightarrow4S-S=\left(4+4^2+...+4^{101}\right)-\left(1+4+4^2+...+4^{100}\right)\)

\(\Leftrightarrow3S=4^{101}-1\)

\(\Rightarrow S=\frac{4^{101}-1}{3}\)

b) Tương tự phần a ta tính được: \(A=\frac{5^{97}-5}{4}\)

Ta có: \(5^{97}-5=\overline{...5}-5=\overline{...0}\)

Đến đây thì A sẽ có cstc là 0 hoặc 4

6 tháng 10 2020

a) S = 1 + 4 + 42 + 43 + ... + 4100

=> 4S = 4( 1 + 4 + 42 + 43 + ... + 4100 )

           = 4 + 42 + 43 + ... + 4101

=> 4S - S = 3S

= 4 + 42 + 43 + ... + 4101 - ( 1 + 4 + 42 + 43 + ... + 4100 )

= 4 + 42 + 43 + ... + 4101 - 1 - 4 - 42 - 43 - ... - 4100 

= 4101 - 1

=> S = (4101 - 1 )/3

b) A = 5 + 52 + 53 + ... + 596

= ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 595 + 596 )

= 30 + 52( 5 + 52 ) + ... + 594( 5 + 52 )

= 30 + 52.30 + ... + 594.30

= 30( 1 +  52 + ... + 594 ) chia hết cho 10 ( vì 30 chia hết cho 10 )

=> A có tận cùng là 0

25 tháng 11 2015

b.(5+5^2+5^3+5^4+5^5+5^6)+......+(5^91+58^92+5^93+5^94+58^95+58^96)
=5(1+5+5^2+563+5^4+5^5)+..........+5^91(1+5+5^2+563+5^4+5^5)
=chia het cho 126                                      chia het cho 126
suy ra S chia het cho 126

c.  Do S là tổng các lũy thừa có cơ số là 5.
Cho nên mỗi lũy thừa đều tận cùng là 5.
Mà S có tất cả 96 số như vậy. Nên chữ số tận cùng của S là 0. 

 

23 tháng 12 2017

(5+5^4)+(5^2+5^5)+(5x^3+5x^6)+.....+(5^93+5^96)

5(1+125)+5^2(1+125)+5^3(1+125)+.....+5^93(1+125)

126(5+5^2+5^3+.........+5^93)

b) 5

30 tháng 7 2018

Ta có : S = 5 + 52 + 53 + .... + 596

=> 5S =  52 + 53 + .... + 597 

=> 5S - S = 597 - 5

=> 4S =  597 - 5

=> S =  \(\frac{5^{97}-5}{4}\)

8 tháng 1 2019

a) Ta có:

 S=51+52+53+...+596 gồm 96 số hạng

   =(51+52+...+56)+(57+58+...+512)+...+(591+592+...+596)

   =(51+52+...+56)+56.(51+52+...+56)+...+585.(51+52+...+56)

   =19530+56.19530+...+585.19530

   =19530.(1+55+...+585)

 Vậy: S chia hết cho 126(Vì 19530 chia hết cho 126)

 b) Vì S chia hết cho 19530 nên S có tận cùng bằng 0(19530=1953.10)

13 tháng 2 2016

vì 5 ; 5^2 ; 5^3 ; ...;5^96 đều có chữ số tận cùng là 5

Mà S có 96 số hạng

vậy chữ số tận cùng của S là:

             5.96=480

vậy chữ số tận cùng của S là 0

 

13 tháng 2 2016

ta có các số có tận cùng là 5 khi nâng lên lũy thừa đều có tân cùng là 5

=> các số hạng trong tổng S đều có tận cùng là 5

và số các số hạng của tổng S là :96

vậy chữ số tận cùng của S là:0

9 tháng 1 2016

5S = 5^2+5^3 + 5^4+.....+5^98

5S - S = (5^2-5^2)+(5^3-5^3) + ... + (5^97 - 5^97) + 5^98-5

4S = 5^98-5

Vậy S = \(\frac{5^{98}-5}{4}\)

 

a/ Ta có:S = 5+5^2+5^3+5^4+......+5^96+5^97

=>5S=5^2+5^3+5^4+....+5^97+5^98

=>5S-S=5^98-5

=>4S=5^98-5

=>S=5^98-5/4