K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

a)

ta có : 3S=3^2+3^3+......+3^101

            => 3S-S=(3^2+3^3+....+3^101)-(3+3^2+...+3^100)

             => 2S=3^101-3

           =>  S=(3^101-3):2

b) S=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+......+(3^97+3^98+3^99+3^100)

     =>S=120+3^4*(3+3^2+3^3+3^4)+......+3^96(3+3^2+3^3+3^4)

     =>S=24*5+3^4*24*5+....+3^96*24*5

     =>S chia hết cho 5

xong rồi bạn nhé

bạn ghi nhớ cách làm này rồi vận dụng vào bài khác nhé

1 tháng 11 2020

a,S = 3 + 3 + 33 + ...+ 3100

S = 3(3 + 3 + 33 + ...+ 3100  ) 

3S = 32 + 33 + 34 + ... + 3101 

3S-S = (32 + 33 + 34 + ... + 3101 ) - (3 + 3 + 33 + ...+ 3100 ) 

2S = 32 + 33 + 34 + ... + 3101  - 3 - 3 - 33 - ...- 3100 

2S= 3101 - 3 

S= (3101 - 3 ) :2 

b,  S = 3 + 3 + 33 + ...+ 3100

S= ( 3+32 + 33 + 34) + (35 + 36 + 37 + 38 ) + ... + (397 + 398 + 399 + 3100 )

S =  120 + 35(3+32 + 33+ 34) + ... + 397(3+32+ 33 + 34 )

S = 120 + 35 .120 + ... + 397.120

S = 5.(24+35.24 + ...+ 397 . 24 )

=> S chia hết cho 5

12 tháng 1 2019

ko biết

24 tháng 2 2016

a^3-a-12a=a(a^2-1)-12a=a(a+1)(a-1)-12a              (1)

ta có a(a+1)(a-1) chia hết  cho 6

12 chia hết cho 6

nên (1) chia hết cho 6

suy ra a^3-13a chia hết cho 6

24 tháng 2 2016

bai toan nay kho qua

21 tháng 11 2015

bó tay . com .vn

22 tháng 4 2015

giup minh voi sap phai nop roi

18 tháng 1 2018

câu a Achia hết cho 128

19 tháng 10 2016

a, \(S=1+3+3^2+3^3+....+3^{100}\)

=> \(3S=3+3^2+3^3+3^4+....+3^{101}\)

=> \(2S=3S-S=3^{101}-1\)

=> \(S=\frac{3^{101}-1}{2}\)

b, \(S=1+3+3^2+3^3+....+3^{100}\)
Tổng S có 101 số hạng. Nhóm 4 số vào 1 nhóm, ta đc 25 nhóm và thừa 1 số hạng

=> \(S=1+\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(S=1+3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)

\(S=1+3.40+3^5.40+...+3^{97}.40\)

\(S=1+40\left(3+3^5+...+3^{97}\right)\)

Có \(40\left(3+3^5+...+3^{97}\right)\)chia hết cho 5 (vì 40 chia hết cho 5)

1 chia 5 dư 1

=> \(S=1+40\left(3+3^5+...+3^{97}\right)\)chia 5 dư 1

=> S không chia hết cho 5 (Đpcm)

30 tháng 6 2016

B = (1 + 3) + (32+33)+.....+(389+390)

  = 4 + 32 .(1 + 3) + .....+390.(1+3)

 = 1 .4 + 32.4 + ..... +390.4

= 4.(1 + 32 + .... +390) chia hết cho 4

6 tháng 9 2018

\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)

\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)

\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)

22 tháng 3 2017

1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số

Gọi số phải tìm là A

Ta có A + 4 chia hết cho 5 , 7 , 9

Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315

Do đó A = 315 - 4 = 311

2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100

S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )

S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )

S = 1.30 +...+2^96.30

S = ( 1 +...+2^96 )30

Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15

Hay S chia hết cho 15

b) Vì S cha hết cho 30 nên S chia hết cho 10

Suy ra S có tận cùng là 0

c) S = 2^1 + 2^2 + 2^3 +...+2^100

2S = 2^2 + 2^3 + 2^4 +...+ 2^101

2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )

S = 2^101 - 2^1

S = 2^101 - 2

22 tháng 3 2017

1. 158

2a. 0 ( doan nha )

b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )

      = 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)

      = 2.15+2^5.15+...+2^97.15

      = 15.(2+2^5+...+2^97) chia het 15

c.2^101-2^1

3. chiu !

8 tháng 12 2018

Ta có ;

S = 3 + 3 2 + + ........ + 3 99 + 3 100

    = ( 3 + 3 2 + 3 3 + 3 4 + 3 5) + .... + ( 3 96 + 3 97 + 3 98 + 3 99 + 3 100 )

    = 3 ( 1 + 3 + 3 2 + 3 3 + 3 4 ) + .... + 3 96 . ( 1 + 3 + 3 2 + 3 3 + 3 4 ) 

    = 3 . 121 + .... + 3 96 . 121

    = 121 . ( 3 + .... + 3 96 ) chia hết cho 121 ( Do 121 chia hết cho 121 )

Vậy S = 3 + 3 2 + + ........ + 3 99 + 3 100 chia hết cho 121