K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2023

\(S=2+2.2^2+3.2^3+...+2016.2^{2016}\)

\(2S=2^2+2.2^3+3.2^4+...+2016.2^{2017}\)

\(2S-S=S=\text{​​}\text{​​}\text{​​}\text{​​}2^2+2.2^3+3.2^4+...+2016.2^{2017}-2-2.2^2-3.2^3-...-2016.2^{2016}\)

\(S=2\left(0-1\right)+2^2\left(1-2\right)+2^3\left(2-3\right)+...+2^{2016}\left(2015-2016\right)+2^{2017}.2016\)

\(S=-\left(2+2^2+2^3+...+2^{2016}\right)+2^{2017}.2016\)

\(\)Đặt \(A=2+2^2+2^3+...+2^{2016}\)

\(2A=2^2+2^3+2^4+...+2^{2017}\)

\(2A-A=A=2^2+2^3+2^4+...+2^{2017}-2-2^2-2^3-...-2^{2016}\)

\(A=2^{2017}-2\)

Thay vào S ta được:
\(S=-2^{2017}+2+2^{2017}.2016\)

\(S=2^{2017}.2015+2\)

Ta có \(S+2013=2^{2017}.2015+2+2013\)

\(S+2013=2^{2017}.2015+2015\)

\(S+2013=2015\left(2^{2017}+1\right)\)

Suy ra \(S+2013⋮2^{2017}+1\)

Vậy \(S+2013⋮2^{2017}+1\) (đpcm)

16 tháng 10 2023

cái này dễ lắm lun

 

18 tháng 4 2022

Giúp mình đi các bạn ơi

13 tháng 4 2023

20a = 20/1.21 + 20/2.22+ ... + 20/80.100

= 1-1/21 + 1/2 - 1/22 +...+ 1/80 - 1/100

= 1  + 1/2 + 1/3 +... + 1/19 + 1/20 - 1/81 - 1/82 -.... - 1/100

80b = 80/1.81 + 80/2.82 + 80/3.83 +... + 80/20.100

= 1 - 1/81+ 1/2 - 1/83 +...+ 1/20 - 1/100

=> 20a = 80b

=> a/b = 4 

22 tháng 4 2023

A=20/1.21+20/2.22+...+20/80.100

=1-1/21+1/2-1/22+...+1/80-1/100

=(1+1/2+...+1/80)-(1/21+1/22+...+1/100)

80B=80/1.81+80/2.82+...+8/20.100

=1-1/81+1/2-1/82+...+1/20-1/100

=(1+1/2+...+1/20)-(1/81+1/82+...+1/100)

=(1+1/2+1/3+...+1/20+1/21+1/22+...+1/80)-(1/21+1/22+...1/80+1/81+1/82+...1/100)

=>20A=80B

=>A=4B

2:

a: =>2(x+1)=26

=>x+1=13

=>x=12

b: =>(6x)^3=125

=>6x=5

=>x=5/6(loại)

c: =>\(7\cdot3^x\cdot\dfrac{1}{3}+11\cdot3^x\cdot3=318\)

=>3^x=9

=>x=2

d: -2x+13 chia hết cho x+1

=>-2x-2+15 chia hết cho x+1

=>15 chia hết cho x+1

=>x+1 thuộc {1;3;5;15}

=>x thuộc {0;2;4;14}

e: 4x+11 chia hết cho 3x+2

=>12x+33 chia hết cho 3x+2

=>12x+8+25 chia hết cho 3x+2

=>25 chia hết cho 3x+2

=>3x+2 thuộc {1;-1;5;-5;25;-25}

mà x là số tự nhiên

nên x=1

1: 

a: Đặt A=2^2024-2^2023-...-2^2-2-1

Đặt B=2^2023+2^2022+...+2^2+2+1

=>2B=2^2024+2^2023+...+2^3+2^2+2

=>B=2^2024-1

=>A=2^2024-2^2024+1=1

c: \(=\dfrac{3^{12}\cdot2^{11}+2^{10}\cdot3^{12}\cdot5}{2^2\cdot3\cdot3^{11}\cdot2^{11}}=\dfrac{2^{10}\cdot3^{12}\left(2+5\right)}{2^{13}\cdot3^{12}}\)

\(=\dfrac{7}{2^3}=\dfrac{7}{8}\)

24 tháng 4 2019

20A=20/1.21+20/2.22+...+20/80.100

=1-1/21+1/2-1/22+...+1/80-1/100

=(1+1/2+...+1/80)-(1/21+1/22+...+1/100)

80B=80/1.81+80/2.82+...+8/20.100

=1-1/81+1/2-1/82+...+1/20-1/100

=(1+1/2+...+1/20)-(1/81+1/82+...+1/100)

=(1+1/2+1/3+...+1/20+1/21+1/22+...+1/80)-(1/21+1/22+...1/80+1/81+1/82+...1/100)

=>20A=80B

=>A=4B

NV
15 tháng 5 2019

Câu 2:

\(20A=\frac{20}{1.21}+\frac{20}{2.22}+\frac{20}{3.23}+...+\frac{20}{80.100}\)

\(20A=1-\frac{1}{21}+\frac{1}{2}-\frac{1}{22}+\frac{1}{3}-\frac{1}{23}+...+\frac{1}{80}-\frac{1}{100}\)

\(20A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{80}-\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{100}\right)\)

\(20A=1+\frac{1}{2}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\) (1)

Lại có:

\(B=\frac{1}{1.81}+\frac{1}{2.82}+...+\frac{1}{20.100}\)

\(\Rightarrow80B=\frac{80}{1.81}+\frac{80}{2.82}+...+\frac{80}{20.100}\)

\(80B=1-\frac{1}{81}+\frac{1}{2}-\frac{1}{82}+...+\frac{1}{20}-\frac{1}{100}\)

\(80B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)(2)

Từ (1) và (2) suy ra \(20A=80B\)

\(\Rightarrow\frac{A}{B}=\frac{80}{20}=4\)

NV
15 tháng 5 2019

Câu 1:

\(\frac{x}{16}-\frac{1}{y}=\frac{1}{32}\)

\(\Leftrightarrow\frac{xy-16}{16y}=\frac{1}{32}\)

\(\Leftrightarrow\frac{xy-16}{y}=\frac{1}{2}\)

\(\Leftrightarrow2xy-32=y\)

\(\Leftrightarrow\left(2x-1\right).y=32\)

Tới đây ta nhận xét do \(2x-1\) luôn lẻ với mọi x nguyên nên \(2x-1\) là ước lẻ của 32

\(\Rightarrow2x-1=\left\{1;-1\right\}\)

Vậy: \(\left\{{}\begin{matrix}2x-1=1\\y=32\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=32\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-1=-1\\y=-32\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-32\end{matrix}\right.\)

Có 2 cặp số nguyên thỏa mãn là \(\left(x;y\right)=\left(1;32\right);\left(0;-32\right)\)

17 tháng 3 2020

ta có: \(A=\frac{1}{1.21}+\frac{1}{2.22}+\frac{1}{3.23}+...+\frac{1}{80.100}\)

\(20A=\frac{20}{1.21}+\frac{20}{2.22}+\frac{20}{2.23}+...+\frac{20}{80.100}\)

\(20A=1-\frac{1}{21}+\frac{1}{2}-\frac{1}{22}+\frac{1}{3}-\frac{1}{23}+...+\frac{1}{80}-\frac{1}{100}\)

\(20A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{80}-\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{100}\right)\)

\(20A=1+\frac{1}{2}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+\frac{1}{83}+...+\frac{1}{100}\right)\)

lại có: \(B=\frac{1}{1.81}+\frac{1}{2.82}+\frac{1}{3.83}+...+\frac{1}{20.100}\)

\(80B=\frac{80}{1.81}+\frac{80}{2.82}+\frac{80}{3.83}+...+\frac{80}{20.100}\)

\(80B=1-\frac{1}{81}+\frac{1}{2}-\frac{1}{82}+\frac{1}{3}-\frac{1}{83}+...+\frac{1}{20}-\frac{1}{100}\)

\(80B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+\frac{1}{83}+...+\frac{1}{100}\right)\)

Vậy 20A = 80B

=> \(\frac{A}{B}=\frac{80}{20}=4\)

17 tháng 3 2020

\(A=\frac{1}{1.21}+\frac{1}{2.22}+\frac{1}{3.23}+...+\frac{1}{80.100}\)

\(20A=\frac{20}{1.21}+\frac{20}{2.22}+\frac{20}{3.23}+...+\frac{20}{80.100}\)

\(20A=1-\frac{1}{21}+\frac{1}{2}-\frac{1}{22}+\frac{1}{3}-\frac{1}{23}+...+\frac{1}{80}-\frac{1}{100}\)

\(20A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{80}-\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{100}\right)\)

\(20A=1+\frac{1}{2}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)(1)

Lại có : 

\(B=\frac{1}{1.81}+\frac{1}{2.82}+\frac{1}{3.83}+...+\frac{1}{20.100}\)

\(\Rightarrow80B=\frac{80}{1.81}+\frac{80}{2.82}+...+\frac{80}{20.100}\)

\(80B=1-\frac{1}{81}+\frac{1}{2}-\frac{1}{82}+...+\frac{1}{20}-\frac{1}{100}\)

\(80B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)(2)

Từ (1) và (2) , suy ra : \(20A=80B\)

\(\Rightarrow\frac{A}{B}=\frac{80}{20}=4\)

6 tháng 4 2023

      S =  1  - 2 + 22 - 23+.....+ 22012 - 22013

 2\(\times\)S =       2  - 22 + 23-.......- 22012 + 22013 - 22014

\(\times\) S  + S =  1 - 22014

3S  = 1 - 22014 

3S - 22014  = 1 - 22014  - 22014  = 1 - 2.22014  = 1- 22015