Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
\(S=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+............+\dfrac{2017}{4^{2017}}\)
\(\Leftrightarrow4S=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...........+\dfrac{2017}{4^{2016}}\)
\(\Leftrightarrow4S-S=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+..........+\dfrac{2017}{4^{2016}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+..........+\dfrac{2017}{4^{2017}}\right)\)
\(\Leftrightarrow3S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+.........+\dfrac{1}{4^{2016}}-\dfrac{2017}{4^{2016}}\)
Đặt :
\(A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+..........+\dfrac{1}{4^{2016}}\)
\(\Leftrightarrow4A=4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+..........+\dfrac{1}{4^{2015}}\)
\(\Leftrightarrow4A-A=\left(4+1+\dfrac{1}{4}+.......+\dfrac{1}{4^{2015}}\right)-\left(1+\dfrac{1}{4}+.......+\dfrac{1}{4^{2016}}\right)\)
\(\Leftrightarrow3A=4-\dfrac{1}{4^{2016}}\)
\(\Leftrightarrow D=\dfrac{4}{3}-\dfrac{1}{2^{2016}.3}\)
\(\Leftrightarrow3S=\dfrac{4}{3}-\dfrac{1}{2^{2016}.3}-\dfrac{2017}{4^{2016}}\)
\(\Leftrightarrow3S< \dfrac{4}{3}\)
\(\Leftrightarrow S< \dfrac{4}{9}\)
\(\Leftrightarrow S< \dfrac{1}{2}\rightarrowđpcm\)
\(A=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\) ( A cho đẹp :v)
\(4A=4\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\right)\)
\(4A=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2017}{4^{2016}}\)
\(4A-A=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2017}{4^{2016}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\right)\)\(3A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}-\dfrac{2017}{4^{2017}}\)
Đặt:
\(M=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\)
\(4M=4\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\right)\)
\(4M=4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2015}}\)
\(4M-M=\left(4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2015}}\right)-\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\right)\)\(3M=4-\dfrac{1}{4^{2016}}\)
\(M=\dfrac{4}{3}-\dfrac{1}{4^{2016}}\)
Thay M vào A ta có:
\(A=\dfrac{4}{9}-\dfrac{1}{4^{2016}.3}-\dfrac{2017}{4^{2017}}\)
\(\Rightarrow A< \dfrac{1}{2}\Rightarrowđpcm\)
\(S=\dfrac{1}{2018}\left(1+\dfrac{1}{1}+1+\dfrac{1}{2}+1+\dfrac{1}{3}+...+1+\dfrac{1}{2018}\right)\)
\(S=\dfrac{1}{2018}\left(2018+\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)
\(S=1+\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)
Do \(\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2018}\right)>0\Rightarrow S>1\) (1)
Lại có:
\(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}< \dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}+...+\dfrac{1}{1}=2018\)
\(\Rightarrow1+\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)< 1+\dfrac{1}{2018}.2018=2\)
\(\Rightarrow S< 2\) (2)
Từ (1), (2) \(\Rightarrow1< S< 2\)
\(\Rightarrow S\) nằm giữa 2 số tự nhiên liên tiếp nên S không phải là số tự nhiên
S = 1/3 + 1/3² + 1/3³ + ... + 1/3²⁰²¹ + 1/3²⁰²²
⇒ S/3 = 1/3² + 1/3³ + 1/3⁴ + ... + 1/3²⁰²² + 1/3²⁰²³
⇒ 2S/3 = S - S/3
= (1/3 + 1/3² + 1/3³ + ... + 1/3²⁰²¹ + 1/3²⁰²²) - (1/3² +1/3³ + 1/3⁴ + ... + 1/3²⁰²² + 1/3²⁰²³)
= 1/3 - 1/3²⁰²³
⇒ S = (1/3 - 1/3²⁰²³) : 2/3
= (1 - 1/3²⁰²²) : 2
Lại có: 1 - 1/3²⁰²² < 1
⇒ S < 1/2
\(S=\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+........+\dfrac{99}{1.2.......100}\)
\(=\dfrac{1}{2!}+\dfrac{2}{3!}+....+\dfrac{99}{100!}\)
\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+.......+\dfrac{100-1}{100!}\)
\(=\dfrac{1}{1}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+....+\dfrac{1}{99!}-\dfrac{1}{100!}\)
\(=1-\dfrac{1}{100!}< 1\)
\(\Leftrightarrow S< 1\left(đpcm\right)\)
Theo bài ra, ta có:
\(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{16}\)
\(\Rightarrow S=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\right)+\left(\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}\right)+\left(\dfrac{1}{15}+\dfrac{1}{16}\right)\)
\(\Rightarrow S< \left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\dfrac{1}{6}.3+\dfrac{1}{9}.3+\dfrac{1}{12}.3+\dfrac{1}{15}.3\)
\(\Rightarrow S< \left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\)
\(\Rightarrow S< 2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)\)
\(\Rightarrow S< 2\left[\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)\right]\)
\(\Rightarrow S< 2\left(\dfrac{2}{2}+\dfrac{2}{4}\right)\)
\(\Rightarrow S< 2\left(\dfrac{2}{2}+\dfrac{1}{2}\right)\)
\(\Rightarrow S< 2.\dfrac{3}{2}\)
\(\Rightarrow S< 3\left(1\right)\)
Lại có: \(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{16}\)
\(\Rightarrow S=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}\right)\)
\(\Rightarrow S>\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\dfrac{1}{8}.4+\dfrac{1}{12}.4+\dfrac{1}{16}.4\)
\(\Rightarrow S>\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\)
\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)\)
\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{2}{4}\right)\)
\(\Rightarrow S>2\left(\dfrac{1}{2}+\dfrac{1}{2}\right)\)
\(\Rightarrow S>2\)
Từ (1) và (2) suy ra \(2< S< 3\)
⇒ S không phải 1 số nguyên
Vậy...
a)
\(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...........-\dfrac{1}{2004^2}\)
\(\Leftrightarrow B=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+..............+\dfrac{1}{2004^2}\right)\)
Đặt :
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+.............+\dfrac{1}{2004^2}\)
Ta thấy :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
..........................
\(\dfrac{1}{2004^2}< \dfrac{1}{2003.2004}\)
\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+..............+\dfrac{1}{2003.2004}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{2003}-\dfrac{1}{2004}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2004}\)
\(\Leftrightarrow A< \dfrac{2003}{2004}\)
\(\Leftrightarrow1-A< 1-\dfrac{2003}{2004}\)
\(\Leftrightarrow B< \dfrac{1}{2004}\left(đpcm\right)\)
b) \(S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-........+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+.......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)
\(\Leftrightarrow2^2S=2^2\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+.....+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+....+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)
\(\Leftrightarrow4S=1-\dfrac{1}{2^2}+.......+\dfrac{1}{2^{4n}}-\dfrac{1}{2^{4n+2}}+.......+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\)
\(\Leftrightarrow4S+S=\left(1-\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+.......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)\(\Leftrightarrow5S=1-\dfrac{1}{2^{2004}}< 1\)
\(\Leftrightarrow S< \dfrac{1}{5}=0,2\)
\(\Leftrightarrow S< 0,2\left(đpcm\right)\)
cho mik hỏi mik ko hiểu tại sao từ 1/2^4n-2 khi nhân với 2^2 lại ra đc 1/2^4n vậy? Xin hãy giải đáp giùm mik
Ta có :
x-y-z=0 => y+z=x (*(
Thay (*) và đa thức M ta có :
M=\(xyz-xy^2-xz^2=\left(y+z\right)yz-\left(y+z\right)y^2-\left(y+z\right)z^2\)
=\(y^2z+yz^2-y^3-zy^2-z^2y-z^3\)
=\(\left(y^2z-y^2z\right)-\left(z^2y-z^2y\right)-\left(y^3+z^3\right)\)
=\(-\left(y^3+z^3\right)\)
Mà \(-\left(y^3+z^3\right)\) là số đối của \(\left(y^3+z^3\right)\) nên M và N là 2 đa thức đối nhau.
Câu 1 :
\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)
=\(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+.......+\dfrac{1}{2012}\right)\)=\(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{1006}\right)\)
\(=\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2013}\)=P
Vậy S=P