Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(1+3+3^2+3^3+...+3^{99}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{100}\right)-\left(1+3+3^2+...+3^{99}\right)\)
\(\Rightarrow2S=3^{100}-1\)
\(\Rightarrow2S+1=3^{100}-1+1=3^{100}\)
\(\Rightarrow2S+1\) là lũy thừa của 3
Giải:
S=\(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\)
Có 30 phân số; chia làm 3 nhóm
S<\(\left(\dfrac{1}{30}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{40}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{50}+...+\dfrac{1}{50}\right)\)
S<\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\)
S<\(\dfrac{47}{60}< \dfrac{48}{60}=\dfrac{4}{5}\)
⇒S<\(\dfrac{4}{5}\) (đpcm)
Chúc bạn học tốt!
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự ta có : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Mà khi đó ta thấy: (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Do : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
Ta thấy : các số hạng trong tổng S đều \(>\frac{7}{35}\)
\(\Rightarrow S>\frac{7}{35}+\frac{7}{35}+\frac{7}{35}+\frac{7}{35}+\frac{7}{35}\)
\(\Rightarrow S>\frac{35}{35}\)
\(\Rightarrow S>1\) ( đpcm )
Ta có: \(S=1+3^1+3^2+3^3+...+3^{2017}+3^{2018}\)
\(=\left(1+3^1+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2016}+3^{2017}+3^{2018}\right)\)
\(=13+3^3\cdot13+...+3^{2016}\cdot13\)
\(=13\cdot\left(1+3^3+...+3^{2016}\right)⋮13\)(đpcm)
đề bài sai
Cách đơn giản nhất và lố nhất :
Cộng tất cả vào rùi tìm S = bao nhiêu
Rồi so sánh thôi , đã chứng tỏ