K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

Lời giải:

$n=1$ thì $S=0$ nguyên nhé bạn. Phải là $n>1$

\(S=1-\frac{1}{1^2}+1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{n^2}\)

\(=n-\underbrace{\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)}_{M}\)

Để cm $S$ không nguyên ta cần chứng minh $M$ không nguyên. Thật vậy

\(M> 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n(n+1)}=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)

\(M>1+\frac{1}{2}-\frac{1}{n+1}>1\) với mọi $n>1$

Mặt khác:

\(M< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{(n-1)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\)

\(M< 1+1-\frac{1}{n}< 2\)

Vậy $1< M< 2$ nên $M$ không nguyên. Kéo theo $S$ không nguyên.

29 tháng 12 2022

Cảm ơn thầy ạ

27 tháng 12 2017

A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)

>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)

\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\)                                  (1)

Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)

\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)

\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\)                 (2)

Từ (1) và (2) suy ra:1 < A < 2

Vậy A không phải là số nguyên

18 tháng 6 2018

vui nhi

14 tháng 3 2020

Ta có : \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2018}{3^{2018}}\)(1)

\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{2018}{3^{2019}}\)(2)

Lấy (1) trừ (2) theo vế ta có : 

\(A-\frac{1}{3}A=\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2018}{3^{2018}}\right)-\left(\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{2018}{3^{2019}}\right)\)

\(\Rightarrow\frac{2}{3}A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\right)-\frac{2018}{3^{2019}}\)

Đặt B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\)

=> 3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\)

Lấy 3B trừ B theo vế ta có :

\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\right)\)

=> 2B = \(1-\frac{1}{3^{2018}}\)

=> \(B=\frac{1}{2}-\frac{1}{3^{2018}.2}\)

Khi đó : \(\frac{2}{3}A=\frac{1}{2}-\frac{1}{3^{2018}.2}-\frac{2018}{3^{2019}}\)

\(A=\left(\frac{1}{2}-\frac{1}{3^{2018}.2}-\frac{2018}{3^{2019}}\right):\frac{2}{3}=\frac{3}{4}-\frac{1}{3^{2017}.4}-\frac{1009}{3^{2018}}=\frac{3}{4}-\left(\frac{1}{3^{2017}.\left(3+1\right)}+\frac{1009}{3^{2018}}\right)\)

\(=\frac{3}{4}-\left(\frac{1}{3^{2018}}+\frac{1}{3^{2017}}-\frac{1009}{3^{2018}}\right)=\frac{3}{4}-\left(\frac{1}{3^{2017}}-\frac{336}{3^{2017}}\right)=\frac{3}{4}+\frac{335}{3^{2017}}\)

Vì A > 0 (1) 

Mặt khác\(\frac{335}{3^{2017}}< \frac{335}{1340}< \frac{1}{4}\)

=> \(\frac{335}{3^{2017}}< \frac{1}{4}\Rightarrow\frac{3}{4}+\frac{335}{3^{2017}}< \frac{1}{4}+\frac{3}{4}\Rightarrow A< 1\)(2)

Từ (1) và (2) => 0 < A < 1

=> A không phải là số nguyên

14 tháng 3 2020

thanks, love you 3000!!!!!!!!!!!!!!!!

13 tháng 7 2018

Đặt  \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2018}}\right)\)

\(A=1-\frac{1}{2^{2018}}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

hok tốt .

13 tháng 7 2018

xin lỗi nha , mk ko thấy S bạn thay A => S là đc

bạn thông cảm , 

NV
13 tháng 1 2019

\(S=\dfrac{1}{2018}\left(1+\dfrac{1}{1}+1+\dfrac{1}{2}+1+\dfrac{1}{3}+...+1+\dfrac{1}{2018}\right)\)

\(S=\dfrac{1}{2018}\left(2018+\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)

\(S=1+\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)\)

Do \(\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2018}\right)>0\Rightarrow S>1\) (1)

Lại có:

\(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}< \dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}+...+\dfrac{1}{1}=2018\)

\(\Rightarrow1+\dfrac{1}{2018}\left(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)< 1+\dfrac{1}{2018}.2018=2\)

\(\Rightarrow S< 2\) (2)

Từ (1), (2) \(\Rightarrow1< S< 2\)

\(\Rightarrow S\) nằm giữa 2 số tự nhiên liên tiếp nên S không phải là số tự nhiên

NV
17 tháng 1 2019

Bạn thấy khó hiểu từ dòng thứ mấy bạn?