Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Ta có : \(\frac{1}{101}>\frac{1}{130};\frac{1}{102}>\frac{1}{301};\frac{1}{103}>\frac{1}{130};...;\frac{1}{129}>\frac{1}{130}\)
a/ P=1-1/2+1/3-1/4+....+1/199-1/200
= 1+1/2+1/3+1/4+1/5+...+1/200 - 2.(1/2+1/4+...+1/200)
= 1+1/2+1/3+1/4+1/5+...+1/200 - 1-1/2-1/3-...-1/100
=1/101+1/102+...+1/200
b/ k-k/2+ k/3- k/4+...+k/199-k/200
=k+k/2+k/2+...+k/199+k/200 -2(k/2+k/4+k/6+...+k/200)
=k+k/2+k/2+...+k/199+k/200-k-k/2-k/3-...-k/100
=k/101+k/102+...+k.200
`Answer:`
Tổng: `(200-100):1+1=100` số hạng
Ta có:
\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
...
\(\frac{1}{200}=\frac{1}{200}\)
\(\Rightarrow A>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)
\(\Rightarrow A>\frac{100}{200}\)
\(\Rightarrow A>\frac{1}{2}\)
Cho biểu thức A= 2100 + 2101 + 2102 . Chứng minh rằng A chia hết cho 7 . Giúp mình giải nha , cảm ơn
2100 + 2101 + 2102
= 299[2 + 22 + 23]
= 299.[2+4+8]
= 299.14
= 299.2.7
= 2100.7 chia hết cho 7
Vậy:...........
+)Đặt \(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}\)
\(A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+...+\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+...+\dfrac{1}{200}\right)\)\(A>\dfrac{1}{125}.25+\dfrac{1}{150}.25+\dfrac{1}{175}.25+\dfrac{1}{200}.25=\dfrac{533}{840}>\dfrac{5}{8}\)
+)\(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}\)
\(A=\left(\dfrac{1}{101}+...+\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...+\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...+\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...+\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...+\dfrac{1}{200}\right)\)\(A< \dfrac{1}{100}.20+\dfrac{1}{120}.20+\dfrac{1}{140}.20+\dfrac{1}{160}.20+\dfrac{1}{180}.20=\dfrac{1879}{2520}< \dfrac{3}{4}\)