Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5S=5(1+5+52+...+52017)
5S=5+52+...+52018
5S-S=(5+52+...+52018)-(1+5+52+...+52017)
4S=52018-5
tính xong 4S rồi đó đến đây bạn thích làm thế nào thì làm
5S=5(1+5+52+...+52017)
5S=5+52+...+52018
5S-S=(5+52+...+52018)-(1+5+52+...+52017)
4S=52018-5
S = 5⁰ + 5¹ + 5² + ... + 5²⁰²³
= (5⁰ + 5¹) + (5² + 5³) + ... + (5²⁰²² + 5²⁰²³)
= 6 + 5².(1 + 5) + ... + 5²⁰²².(1 + 5)
= 6 + 5².6 + ... + 5²⁰²².6
= 6.(1 + 5² + ... + 5²⁰²²) ⋮ 6
Vậy S ⋮ 6
--------
Số số hạng của S:
2023 - 0 + 1 = 2024 (số)
2024 : 3 dư 2 nên khi nhóm các số hạng của S theo nhóm 3 thì dư 2 số hạng
Ta có:
S = 5⁰ + 5¹ + 5² + 5³ + ... + 5²⁰²³
= 5⁰ + 5¹ + (5² + 5³ + 5⁴) + (5⁵ + 5⁶ + 5⁷) + ... + (5²⁰²¹ + 5²⁰²² + 5²⁰²³)
= 6 + 5².(1 + 5 + 5²) + 5⁵.(1 + 5 + 5²) + ... + 5²⁰²¹.(1 + 5 + 5²)
= 6 + 5².31 + 5⁵.31 + ... + 5²⁰²¹.31
= 6 + 31.(5² + 5⁵ + ... + 5²⁰²¹)
Do 31.(5² + 5⁵ + ... + 5²⁰²¹) ⋮ 31
6 + 31.(5² + 5⁵ + ... + 5²⁰²¹) chia 31 dư 6
Vậy S chia 31 dư 6
------------
Sửa đề:
Tìm số tự nhiên n để 4S - 25² = -1
S = 5⁰ + 5¹ + 5² + 5³ + ... + 5²⁰²³
5S = 5 + 5² + 5³ + 5⁴ + ... + 5²⁰²⁴
⇒ 4S = 5S - S
= (5 + 5² + 5² + 5³ + ... + 5²⁰²⁴) - (1 + 5¹ + 5² + 5³ + ... + 5²⁰²³)
= 5²⁰²⁴ - 1
⇒ 4S - 25²ⁿ = -1
⇒ 5²⁰²⁴ - 1 - (5²)²ⁿ = -1
⇒ 5²⁰²⁴ - 5⁴ⁿ = -1 + 1
⇒ 5⁴ⁿ = 5²⁰²⁴
⇒ 4n = 2024
⇒ n = 2024 : 4
⇒ n = 506
\(S=\left(5^0+5^1\right)+\left(5^2+5^3\right)+...+\left(5^{2022}+5^{2023}\right)\\ =6+5^2\left(1+5\right)+...+5^{2022}\left(1+5\right)\\ =6+5^2.6+...+5^{2022}.6\\ =6\left(1+5^2+...+5^{2022}\right)⋮6\)
\(S=\left(5^0+5^1+5^2\right)+...+\left(5^{2021}+5^{2022}+5^{2023}\right)\\ =31+...+5^{2021}\left(1+5+5^2\right)\\ =31\left(1+...+5^{2021}\right)⋮31\)
=> Dư : 0
\(5S=5^1+5^2+5^3+5^4+...+5^{2024}\\ =>5S-S=4S=5^{2024}-1\)
Mà : \(4S-25^{2n}=1\\ =>5^{2024}-1-25^{2n}=1\\ =>5^{2024}-25^{2n}=2\)
Bạn xem lại đề nhé
3:
\(A=10^{15}+5=1000...05\)(Có 15 chữ số 0)
Tổng các chữ số trong số A là:
1+0+0+...+0+5=6
=>A chia hết cho 3
=>Số dư khi A chia cho 3 là 0
Vì tổng các chữ số trong A là 6 không chia hết cho 9
nên số dư của A khi chia cho 9 là 6
5:
Số số hạng trong dãy từ 4 đến 160 là: \(\dfrac{160-4}{4}+1=\dfrac{156}{4}+1=40\left(số\right)\)
Tổng các số trong dãy từ 4 đến 160 là:
\(\left(160+4\right)\cdot\dfrac{40}{2}=164\cdot20=3280\)
=>C=3280+1=3281
S=1+5+5^2+...+5^2017
(=)S=(1+5+5^2)+...+(5^2015+5^2016+5^2017)
(=)S=1(1+5+5^2)+...+5^2015(1+5+5^2)
(=)S=1.31+...+5^2015.31
(=)S=(1+...+5^2015).31 chia het cho 31
Vay S chia het cho 31
3^3027 >4S