K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2016

    S=1+5+5^2+...+5^2017

(=)S=(1+5+5^2)+...+(5^2015+5^2016+5^2017)

(=)S=1(1+5+5^2)+...+5^2015(1+5+5^2)

(=)S=1.31+...+5^2015.31

(=)S=(1+...+5^2015).31 chia het cho 31

Vay S chia het cho 31

3^3027 >4S

26 tháng 5 2016

5S=5(1+5+52+...+52017)

5S=5+52+...+52018

5S-S=(5+52+...+52018)-(1+5+52+...+52017)

4S=52018-5

tính xong 4S rồi đó đến đây bạn thích làm thế nào thì làm

26 tháng 5 2016

5S=5(1+5+52+...+52017)

5S=5+52+...+52018

5S-S=(5+52+...+52018)-(1+5+52+...+52017)

4S=52018-5

8 tháng 11 2023

S = 5⁰ + 5¹ + 5² + ... + 5²⁰²³

= (5⁰ + 5¹) + (5² + 5³) + ... + (5²⁰²² + 5²⁰²³)

= 6 + 5².(1 + 5) + ... + 5²⁰²².(1 + 5)

= 6 + 5².6 + ... + 5²⁰²².6

= 6.(1 + 5² + ... + 5²⁰²²) ⋮ 6

Vậy S ⋮ 6

--------

Số số hạng của S:

2023 - 0 + 1 = 2024 (số)

2024 : 3 dư 2 nên khi nhóm các số hạng của S theo nhóm 3 thì dư 2 số hạng

Ta có:

S = 5⁰ + 5¹ + 5² + 5³ + ... + 5²⁰²³

= 5⁰ + 5¹ + (5² + 5³ + 5⁴) + (5⁵ + 5⁶ + 5⁷) + ... + (5²⁰²¹ + 5²⁰²² + 5²⁰²³)

= 6 + 5².(1 + 5 + 5²) + 5⁵.(1 + 5 + 5²) + ... + 5²⁰²¹.(1 + 5 + 5²)

= 6 + 5².31 + 5⁵.31 + ... + 5²⁰²¹.31

= 6 + 31.(5² + 5⁵ + ... + 5²⁰²¹)

Do 31.(5² + 5⁵ + ... + 5²⁰²¹) ⋮ 31

6 + 31.(5² + 5⁵ + ... + 5²⁰²¹) chia 31 dư 6

Vậy S chia 31 dư 6

------------

Sửa đề:

Tìm số tự nhiên n để 4S - 25² = -1

S = 5⁰ + 5¹ + 5² + 5³ + ... + 5²⁰²³

5S = 5 + 5² + 5³ + 5⁴ + ... + 5²⁰²⁴

⇒ 4S = 5S - S

= (5 + 5² + 5² + 5³ + ... + 5²⁰²⁴) - (1 + 5¹ + 5² + 5³ + ... + 5²⁰²³)

= 5²⁰²⁴ - 1

⇒ 4S - 25²ⁿ = -1

⇒ 5²⁰²⁴ - 1 - (5²)²ⁿ = -1

⇒ 5²⁰²⁴ - 5⁴ⁿ = -1 + 1

⇒ 5⁴ⁿ = 5²⁰²⁴

⇒ 4n = 2024

⇒ n = 2024 : 4

⇒ n = 506

DT
8 tháng 11 2023

\(S=\left(5^0+5^1\right)+\left(5^2+5^3\right)+...+\left(5^{2022}+5^{2023}\right)\\ =6+5^2\left(1+5\right)+...+5^{2022}\left(1+5\right)\\ =6+5^2.6+...+5^{2022}.6\\ =6\left(1+5^2+...+5^{2022}\right)⋮6\)

\(S=\left(5^0+5^1+5^2\right)+...+\left(5^{2021}+5^{2022}+5^{2023}\right)\\ =31+...+5^{2021}\left(1+5+5^2\right)\\ =31\left(1+...+5^{2021}\right)⋮31\)

=> Dư : 0

\(5S=5^1+5^2+5^3+5^4+...+5^{2024}\\ =>5S-S=4S=5^{2024}-1\)

Mà : \(4S-25^{2n}=1\\ =>5^{2024}-1-25^{2n}=1\\ =>5^{2024}-25^{2n}=2\)

Bạn xem lại đề nhé

 

26 tháng 10 2023

3:

\(A=10^{15}+5=1000...05\)(Có 15 chữ số 0)

Tổng các chữ số trong số A là:

1+0+0+...+0+5=6

=>A chia hết cho 3

=>Số dư khi A chia cho 3 là 0

Vì tổng các chữ số trong A là 6 không chia hết cho 9

nên số dư của A khi chia cho 9 là 6

5:

Số số hạng trong dãy từ 4 đến 160 là: \(\dfrac{160-4}{4}+1=\dfrac{156}{4}+1=40\left(số\right)\)

Tổng các số trong dãy từ 4 đến 160 là:

\(\left(160+4\right)\cdot\dfrac{40}{2}=164\cdot20=3280\)

=>C=3280+1=3281

26 tháng 10 2023

xem lại bài lớp 6 chx học logarit 

11 tháng 5 2022

tui ko bs