K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

http://123link.pro/1VmdhZJ

5 tháng 5 2019

Q(x) = ax2 + bx + c

ta có:Q(-3)=9a+(-3)b+c

Q(1)=a+b+c

Q(-3) - Q(1)=

(9a+(-3)b+c)-(a+b+c)

=(9a-a)+)+(-3b-b)+(c-c)

=8a+(-4)b

= 4.2a+4.-b

=4(2a-b)

thay 2a - b = 0 vào đa thức đã cho, ta được:

Q(-3) - Q(1) =4

=>

Q(-3) - Q(1) >0

5 tháng 5 2019

mình nhầm 2 dòng cuối nhé phải là

Q(-3) - Q(1) =0

=>

Q(-3) - Q(1) ≥ 0

Bài 1:

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}\left(-1\right)^3+a\cdot\left(-1\right)^2+b\cdot\left(-1\right)-2=0\\1^3+a\cdot1^2+b\cdot1-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=3\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)

Vậy: \(f\left(x\right)=x^3+2x^2-x-2\)

Đặt f(x)=0

\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

=>Nghiệm còn lại là x=-2

28 tháng 5 2018

ta có: 2a + b  = 0

\(\Rightarrow2a=-b\Rightarrow a=\frac{-b}{2}\)

ta có: \(P_{\left(-1\right)}=a.\left(-1\right)^2+b.\left(-1\right)+c\)

\(P_{\left(-1\right)}=a-b+c\)

thay số: \(P_{\left(-1\right)}=\frac{-b}{2}-b+c\)

\(P_{\left(-1\right)}=\frac{-b}{2}-\frac{2b}{2}+c=\frac{-b-2b}{2}+c\)

\(P_{\left(-1\right)}=\frac{-3b}{2}+c\)

ta có: \(P_{\left(3\right)}=a.3^2+b.3+c\)

\(P_{\left(3\right)}=a9+3b+c\)

thay số: \(P_{\left(3\right)}=\frac{-b}{2}.9+3b+c\)

\(P_{\left(3\right)}=\frac{-9b}{2}+\frac{6b}{2}+c\)

\(P_{\left(3\right)}=\frac{-9b+6b}{2}+c\)

\(P_{\left(3\right)}=\frac{-3b}{2}+c\)

\(\Rightarrow P_{\left(-1\right)}.P_{\left(3\right)}=\left(\frac{-3b}{2}+c\right).\left(\frac{-3b}{2}+c\right)\)

\(P_{\left(-1\right)}.P_{\left(3\right)}=\left(\frac{-3b}{2}+c\right)^2\ge0\)

\(\Rightarrow P_{\left(-1\right)}.P_{\left(3\right)}\ge0\left(đpcm\right)\)

28 tháng 5 2018

Ta có : 

\(P\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(3\right)=a.3^2+b.3+c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(3\right)=9a+3b+c\end{cases}}\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=\left(9a+3b+c\right)-\left(a-b+c\right)\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=9a+3b+c-a+b-c\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=8a+4b\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=4\left(2a+b\right)\)

Mà \(2a+b=0\Rightarrow4\left(2a+b\right)=0\Rightarrow P\left(3\right)-P\left(-1\right)=0\Rightarrow P\left(3\right)=P\left(-1\right)\)

Nên : 

\(P\left(3\right).P\left(-1\right)=P\left(-1\right).P\left(-1\right)=\left[P\left(-1\right)\right]^2\ge0\)

\(\Rightarrow P\left(3\right).P\left(-1\right)\ge0\left(Đpcm\right)\)

P/s : Đúng nha 

30 tháng 5 2020

\(f\left(0\right)=a.0^2+b.0+c=c\) có giá trị nguyên 

\(f\left(1\right)=a+b+c\) có giá trị nguyên => a + b có giá trị nguyên 

\(f\left(2\right)=4a+2b+c=2a+2\left(a+b\right)+c\)=> 2a có giá trị nguyên 

=> 4a có giá trị nguyên 

=> 2b có giá trị nguyên.