Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia
a( \(P=\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\)(ĐKXĐ : \(1\le x\ne3\))
\(=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\left(x-3\right)}=\sqrt{x-1}+\sqrt{2}\)
b) \(x=4\left(2-\sqrt{3}\right)\Rightarrow x-1=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\)
Thay vào P được : \(P=2-\sqrt{3}+\sqrt{2}\)
c) Với mọi \(x\ge1,x\ne3\)ta luôn có \(\sqrt{x-1}\ge0\Rightarrow\) \(P=\sqrt{x-1}+\sqrt{2}\ge\sqrt{2}\). Dấu "=" xảy ra khi x = 1
Vậy Min P = \(\sqrt{2}\Leftrightarrow x=1\)
2. a) \(Q=\frac{\sqrt{x+2}-1}{x+1}\)(ĐKXĐ: \(-2\le x\ne-1\))
\(=\frac{\left(\sqrt{x+2}-1\right)\left(\sqrt{x+2}+1\right)}{\left(x+1\right)\left(\sqrt{x+2}+1\right)}=\frac{x+2-1}{\left(x+1\right)\left(\sqrt{x+2}+1\right)}=\frac{x+1}{\left(x+1\right)\left(\sqrt{x+2}+1\right)}=\frac{1}{\sqrt{x+2}+1}\)b) \(x=40,25=\frac{161}{4}\Rightarrow x+2=\frac{169}{4}\Rightarrow Q=\frac{1}{\sqrt{\frac{169}{4}}+1}=\frac{1}{\frac{13}{2}+1}=\frac{2}{15}\)
c) Ta có : \(Max_Q\Leftrightarrow Min_{\left(\sqrt{x+2}+1\right)}\)
Mà : \(\sqrt{x+2}+1\ge1\) với mọi \(-2\le x\ne-1\)
Do đó Max Q = 1 \(\Leftrightarrow x=-2\)
I) Đk: x > 0 và x \(\ne\)9
\(D=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(D=\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(D=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
=> \(\frac{1}{D}=\frac{\sqrt{x}+3}{\sqrt{x}+1}=\frac{\sqrt{x}+1+2}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\)
Để 1/D nguyên <=> \(\frac{2}{\sqrt{x}+1}\in Z\)
<=> \(2⋮\left(\sqrt{x}+1\right)\) <=> \(\sqrt{x}+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Do \(x>0\) => \(\sqrt{x}+1>1\) => \(\sqrt{x}+1=2\)
<=> \(\sqrt{x}=1\) <=> x = 1 (tm)
\(E=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\)
\(E=\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)
\(E=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b) Với x\(\ge\)0; ta có:
\(E=\frac{8}{9}\) <=> \(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)
<=> \(3\sqrt{x}=2x-2\sqrt{x}+2\)
<=> \(2x-4\sqrt{x}-\sqrt{x}+2=0\)
<=> \(\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
<=> \(\orbr{\begin{cases}x=\frac{1}{4}\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)
e) Ta có: \(E=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\ge0\forall x\in R\) (vì \(x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\))
Dấu "=" xảy ra<=> x = 0
Vậy MinE = 0 <=> x = 0
Lại có: \(\frac{1}{E}=\frac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}-1+\frac{1}{\sqrt{x}}\right)\ge\frac{3}{4}\left(2\sqrt{\sqrt{x}\cdot\frac{1}{\sqrt{x}}}-1\right)\)(bđt cosi)
=> \(\frac{1}{E}\ge\frac{3}{2}.\left(2-1\right)=\frac{3}{2}\)=> \(E\le\frac{2}{3}\)
Dấu "=" xảy ra<=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\) <=> x = 1
Vậy MaxE = 2/3 <=> x = 1
Ta có ; \(Q=\frac{1}{x-\sqrt{x}+3}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{11}{4}}\le\frac{4}{11}\)
Min Q = \(\frac{4}{11}\Leftrightarrow x=\frac{1}{4}\)
cám ơn nha