Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) bn tự lm
b) n + 2 chia hết cho n2 + 1
=> n.(n + 2) chia hết cho n2 + 1
=> n2 + 2n chia hết cho n2 + 1
=> n2 + 1 + 2n - 1 chia hết cho n2 + 1
Do n2 + 1 chia hết cho n2 + 1 => 2n - 1 chia hết cho n2 + 1 (1)
Lại có: n + 2 chia hết cho n2 + 1 (theo đề bài)
=> 2.(n + 2) chia hết cho n2 + 1
=> 2n + 4 chia hết cho n2 + 1 (2)
Từ (1) và (2) => (2n + 4) - (2n - 1) chia hết cho n2 + 1
=> 2n + 4 - 2n + 1 chia hết cho n2 + 1
=> 5 chia hết cho n2 + 1
Mà \(n\in N\) nên \(n^2+1\ge1\)
\(\Rightarrow n^2+1\in\left\{1;5\right\}\)
\(\Rightarrow n^2\in\left\{0;4\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
Thử lại ta thấy trường hợp n = 2 không thỏa mãn
Vậy n = 0
c) bn tự lm
a,\(=x^{1.2.3....49.50}\)
b,\(\Rightarrow\)2Q\(=2+2^2+2^3+...+2^{50}\)
2Q-Q\(=2+2^2+2^3+...+2^{50}-1-2-2^2-...-2^{49}\)
Q\(=2^{50}-1\)
Q+1=\(2^{50}\)
Mà Q+1=\(2^n\)
\(2^{50}=2^n\Rightarrow n=50\)
a) x1+2+3+...+50=x1275
b)Q=1+2+22+23+....+249
2Q=2+22+23+...+250
2Q-Q=250-1
Q+1=250 Mà Q+1=2n suy ra 250=2n
Vậy n=50
a) \(x.x^2.x^3.....x^{50}\)
\(=x^{1+2+...+50}\)
b) \(Q=1+2+2^2+...+2^{49}\)
\(2Q=2+2^2+...+2^{50}\)
\(2Q-Q=2+2^2+...+2^{50}-1-2-2^2-...-2^{49}\)
\(Q=2^{50}-1\)
Thay \(Q=2^{50}-1\)vào Q + 1 = 2n ta có:
\(2^{50}-1+1=2^n\)
\(\Rightarrow2^{50}=2^n\)
\(\Rightarrow n=50\)
a)x . x2 . x3 . x4 . x5 ...x49 . x50
= x1 . x2+3+4+5+....49+50
Ta có :
Số số hạng là : ( 50 - 2 ) : 1 + 1 = 49 ( số hạng )
Tổng là : ( 50 + 2 ) . 49 : 2 = 1274
= x1 . x1274
= x1275
câu b tương tự
Cầu 1:
\(\frac{a+b}{a^2+ab+b^2}=\frac{49}{1801}\)
Biến đổi ta có: \(\frac{a+b}{\left(a+b\right)^2-ab}=\frac{49}{1801}\)
Cứ cho a+b=49 thì
Thế a+b vào đẳng thức trên đc:
\(\frac{a+b}{2401-ab}=\frac{49}{1801}\)
Từ đó: ta có
\(\hept{\begin{cases}a+b=49\\ab=600\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=24\\b=25\end{cases}}\)hoặc \(\hept{\begin{cases}b=24\\a=25\end{cases}}\)
Vậy phân số cần tìm là ........... (có 2 p/s nha)
Câu 2 Dễ mà ~~~~~~~
Làm biếng :3
Ta có:
Q = 1+2+2^2+...2^49
2Q = 2+2^2+2^3+...2^50
2Q - Q = (2+2^2+2^3+...+2^50) - (1+2+2^2+...+2^49)
Q = 2^50 - 1
Q+1 = 2^50 - 1 +1 = 2^50
Q+1 = 2^50
\(\Rightarrow n=50\)