Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\dfrac{\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}.\left(\sqrt{5}+2\right)=\dfrac{\sqrt[3]{5\sqrt{5}-3.5.2+3\sqrt{5}.4-8}}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}.\left(\sqrt{5}+2\right)=\dfrac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{3}=\dfrac{5-4}{3}=\dfrac{1}{3}\) Thay : \(x=\dfrac{1}{3}\) vào A , ta được :
\(A=\left(\dfrac{3}{27}+\dfrac{8}{9}-\dfrac{3}{3}+1\right)^{2012}=1^{2012}=1\)
Vậy ,...
\(x=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\dfrac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\dfrac{5-4}{\sqrt{5}+3-\sqrt{5}}=\dfrac{1}{3}\)A=\(\left(3\left(\dfrac{1}{3}\right)^3+8\left(\dfrac{1}{3}\right)^2+2\right)^{2009}-3^{2009}=3^{2009}-3^{2009}=0\)
\(A=x_1.x_2=\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\sqrt{3^2-\sqrt{5^2}}=\sqrt{9-5}=\sqrt{4}=2\)
\(B=x^2_1+x^2_2=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=3+\sqrt{5}+3-\sqrt{5}=6\)
\(\text{Δ}=\left(m+3\right)^2-4m^2\)
\(=m^2+6m+9-4m^2=-3m^2+6m+9\)
\(=-3\left(m^2-2m-3\right)=-3\left(m-3\right)\left(m+1\right)\)
Để phương trình có hai nghiệm phân biệt thì (m-3)(m+1)<0
=>-1<m<3
b:\(\Leftrightarrow x1+x2+2\sqrt{x_1x_2}=5\)
\(\Leftrightarrow m+3+2\sqrt{m^2}=5\)
=>2|m|=5-m-3=2-m
TH1: m>=0
=>2m=2-m
=>3m=2
=>m=2/3(nhận)
TH2: m<0
=>-2m=2-m
=>-2m+m=2
=>m=-2(loại)
c: P(x1)=P(x2)
=>\(x_1^3+a\cdot x_1^2+b=x_2^3+a\cdot x_2^2+b\)
=>\(\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)+a\left(x_1-x_2\right)\left(x_1+x_2\right)=0\)
=>(x1-x2)(x1^2+x1x2+x2^2+ax1+ax2)=0
=>x=0 và a=0
=>\(\left\{{}\begin{matrix}a=0\\b\in R\end{matrix}\right.\)
\(x^3=3+\sqrt{17}+3-\sqrt{17}+3a.b\left(a+b\right)\) dài quá đặt a,b
a.b=-2
x^3=6-6(a+b)=6-6x
=>x^3+6x-5=6-5=1
KL: P(x)=12016 =1
Tìm P(a) với a = ..... nhé
Nhầm đề tí!