Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,thay m=1 vào phương trình ta được :
x2-4.1x+3.12-3=0
x2-4x=0
x(x-4)=0
x=0
x-4=0⇔x=4
phần b mình chưabiết lm ạ
b) \(\Delta'=4m^2-3m^2+3=m^2+3>0\Rightarrow\) pt luôn có 2 nghiệm phân biệt
Theo hệ thức Viet ta có : \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=3m^2-3\end{matrix}\right.\)
Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\\ =16m^2-12m^2+12=4m^2+12\Rightarrow\left|x_1-x_2\right|=\sqrt{4m^2+12}\)
\(\left|\dfrac{x_1+x_2+4}{x_1-x_2}\right|=\left|\dfrac{4m+4}{\sqrt{4m^2+12}}\right|=\left|\dfrac{2m+2}{\sqrt{m^2+3}}\right|\)
Đặt \(y=\left|\dfrac{2m+2}{\sqrt{m^2+3}}\right|\ge0\Rightarrow y^2=\dfrac{\left(2m+2\right)^2}{m^2+3}\Rightarrow y^2m^2+3y^2=4m^2+8m+4\\ \Leftrightarrow\left(y^2-4\right)m^2-8m+3y^2-4=0\)
\(\Delta'=16-\left(3y^2-4\right)\left(y^2-4\right)\ge0\\ \Leftrightarrow-3y^4+16y^2\ge0\\ \Leftrightarrow y^2\le\dfrac{16}{3}\Leftrightarrow0\le y\le\dfrac{4\sqrt{3}}{3}\)
y đạt GTLN \(\Leftrightarrow\Delta'=0\Rightarrow m=\dfrac{4}{y^2-4}=\dfrac{4}{\dfrac{16}{3}-4}=3\)
Thay m=1 vào phương trình trên \(\Leftrightarrow x^2-2.1x-3=0\Leftrightarrow x^2-2x-3=\left(x-3\right)\left(x+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
b) Ta có a và c trái dấu (1 và -3 trái dấu) nên phương trình có 2 nghiệm phân biệt với mọi m
Theo định lí Vi-ét ta có \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=\frac{2m}{1}=2m\\x_1x_2=\frac{c}{a}=\frac{-3}{1}=-3\end{matrix}\right.\)
Vì \(x_1x_2=-3\) nên phương trình có 1 nghiệm âm và 1 nghiệm dương
Giả sử \(x_1< 0\)
Vậy \(x_2-x_1=6\Leftrightarrow x_1+x_2-2x_1=6\Leftrightarrow x_1=\frac{2m-6}{2}=m-3\)
\(\Rightarrow x_2=2m-x_1=2m-\left(m-3\right)=m+3\)
Và \(x_1x_2=-3\Leftrightarrow\left(m-3\right)\left(m+3\right)=-3\Leftrightarrow m^2-9=-3\Leftrightarrow m^2=6\Leftrightarrow m=\pm\sqrt{6}\)
Bài 1:
\(x^2-2mx+m^2-m-6=0\)
Xét \(\Delta=\left(-2m\right)^2-4\left(m^2-m-6\right)=4m^2-4m^2+4m+24=4m+24>0\Rightarrow m>-6\)
Theo hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=m^2-m-6\end{matrix}\right.\)
Theo bài ra:
\(\left|x1\right|+\left|x2\right|=8\)
\(\Rightarrow\left(\left|x1\right|+\left|x2\right|\right)^2=64\)
\(\Rightarrow\left(x1+x2\right)^2-2x1x2+2\left(\left|x1x2\right|\right)=64\)
\(\Leftrightarrow\left(2m\right)^2-2.\left(m^2-m-6\right)+2\left(\left|m^2-m-6\right|\right)=64\)
\(\Leftrightarrow\left(2m\right)^2=64\Leftrightarrow4m^2-64=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=4\\m=-4\end{matrix}\right.\) (tm)
a,Với \(m=4\)thì phương trình tương đương với :
\(x^2-4x+3=0\)
Ta dễ dàng nhận thấy
\(a+b+c=1-4+3=0\)
nên phương trình sẽ có
\(\left\{{}\begin{matrix}x_1=1\\x_2=3\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là : \(\left\{1;3\right\}\)
b,sửa đề thành cộng nhé :)
Theo hệ thức vi ét ta có :
\(x_1+x_2=m\)
Theo đề bài ta có : \(\left[{}\begin{matrix}x_1+x_2=4\\x_1+x_2=-4\end{matrix}\right.\)
\(< =>\left[{}\begin{matrix}m=4\\m=-4\end{matrix}\right.\)
Lời giải:
Trước tiên, để pt có 2 nghiệm phân biệt ($x_1,x_2$) thì:
\(\Delta'=(m+2)^2-(m^2-9)>0\)
\(\Leftrightarrow 4m+13>0\leftrightarrow m> \frac{-13}{4}\)
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2(m+2)\\ x_1x_2=m^2-9\end{matrix}\right.\)
Khi đó:
\(|x_1-x_2|=x_1+x_2\)
\(\Rightarrow \left\{\begin{matrix} x_1+x_2=2(m+2)\geq 0 \\ (x_1-x_2)^2=(x_1+x_2)^2\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\geq -2\\ (x_1+x_2)^2-4x_1x_2=(x_1+x_2)^2\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\geq -2\\ 4x_1x_2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\geq -2\\ 4(m^2-9)=0\end{matrix}\right.\Rightarrow m=3\) (thỏa mãn)
Vậy.........
Bạn ghi lại đề, \(x_1^2-2mx_1+2m-m\) xuất hiện 2 con m ở cuối nên chắc là bạn ghi nhầm chỗ nào đó