Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=1,b=-4,c=m-1
Ta có : △ = b\(^2\)-4ac =16-4(m-2)=16-4m+8
Để PT(1) có nghiệm kép thì △=0 <=> 16-4m+8=0<=> 4m=24<=>m=6
Với m=6 PT(1) <=> x\(^2\)-4x+6-2=0<=>x\(^2\)-4x+4=0
Lại Có m=6 thì pt có nghiệm kép => x\(_1\)=x\(_2\)=-\(\dfrac{b}{2a}\)=2
Vậy Với m=6 thì pt 1 có nghiệm kép x=1
b) Theo hệ thức Vi-et
Ta có: x\(_1\)+x\(_2\)=\(\dfrac{-b}{a}\)=4 và x\(_1\).x\(_2\)=\(\dfrac{c}{a}\)=m-2
x1\(^2\)+x2\(^2\)=9
<=> (x\(_1\)+x\(_2\))\(^2\)-2x\(_1\).x\(_2\)=9
<=>16-2m+4=9
<=>2m=1
<=> m=\(\dfrac{1}{2}\)
Vậy m =\(\dfrac{1}{2}\) thì pt(1) có 2 nghiệm thõa mãn x\(_1\)\(^2\)+ x\(_2\)\(^2\)=9
a) Bạn tự giải
b) Ta có: \(\Delta'=m^2-5\)
Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\) \(\Leftrightarrow\left[{}\begin{matrix}m>\sqrt{5}\\m< -\sqrt{5}\end{matrix}\right.\)
Vậy ...
a) Thay m=2 vào pt, ta được:
\(x^2-2\left(2-1\right)x-2\cdot2+6=0\)
\(\Leftrightarrow x^2-2x+2=0\)
\(\Leftrightarrow x^2-2x+1+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+1=0\)(Vô lý)
Vậy: Khi m=2 thì phương trình vô nghiệm
b) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-2m+6\right)\)
\(=\left(2m-2\right)^2-4\left(-2m+6\right)\)
\(=4m^2-8m+4+8m-24\)
\(=4m^2-20\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow4m^2-20>0\)
\(\Leftrightarrow4m^2>20\)
\(\Leftrightarrow m^2>5\)
\(\Leftrightarrow\left[{}\begin{matrix}m< -\sqrt{5}\\m>\sqrt{5}\end{matrix}\right.\)
a/ \(x^2-\left(2m+1\right)x+m=0\)
\(\Delta=[-\left(2m+1\right)]^2-4m=4m^2+4m+1-4m=4m^2+1\)
vi 1>0
4m2≥0(với mọi m)
Nên 4m2+1>0(với mọi m)
Vậy pt luôn có 2 nghiệm phân biệt với mọi m
b)Theo định lí viet \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt
\(\Rightarrow x_1^2-\left(2m+1\right)x_1+m=0\) \(\Leftrightarrow x_1^2-x_1=2mx_1-m\)
\(A=x_1^2-x_1+2mx_2+x_1x_2\)
\(=2mx_1-m+2mx_2+x_1x_2\)\(=2m\left(x_1+x_2\right)-m+x_1x_2\)\(=2m\left(2m+1\right)-m+m\)\(=4\left(m+\dfrac{1}{4}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\forall m\)
Dấu = xra khi \(m=-\dfrac{1}{4}\)
Vậy minA=\(-\dfrac{1}{4}\)khi \(m=-\dfrac{1}{4}\)
a: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(m^2-4m+5\right)\)
\(=4\left(m+1\right)^2-4\left(m^2-4m+5\right)\)
\(=4m^2+8m+4-4m^2+16m-20\)
=24m-16
Để phương trình có hai nghiệm thì Δ>=0
=>24m-16>=0
=>24m>=16
=>\(m>=\dfrac{2}{3}\)
b: Bạn xem lại đề nha bạn
\(\Delta'=\left(m+1\right)^2-\left(m^2+3m-2\right)=-m+3\)
a. Phương trình có nghiệm khi:
\(\Delta'\ge0\Rightarrow m\le3\)
b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3m-2\end{matrix}\right.\)
c.
\(x_1^2+x_2^2-x_1x_2=22\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=22\)
\(\Leftrightarrow4\left(m+1\right)^2-3\left(m^2+3m-2\right)=22\)
\(\Leftrightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=4\left(loại\right)\\m=-3\end{matrix}\right.\)
a. Phương trình có nghiệm \(x=-1\) nên:
\(\left(-1\right)^2-2\left(m-1\right).\left(-1\right)+m-5=0\)
\(\Leftrightarrow1+2m-2+m-5=0\)
\(\Leftrightarrow m=2\)
Khi đó: \(x_2=-\dfrac{c}{a}=-\dfrac{m-5}{1}=-\dfrac{2-5}{1}=3\)
b.
\(\Delta'=\left(m-1\right)^2-\left(m-5\right)=m^2-3m+6=\left(m-\dfrac{3}{2}\right)^2+\dfrac{15}{4}>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm phân biệt với mọi m
c.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(A=4\left(m-1\right)^2-2\left(m-5\right)\)
\(A=4m^2-10m+14=4\left(m-\dfrac{5}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)
\(A_{min}=\dfrac{31}{4}\) khi \(m-\dfrac{5}{4}=0\Rightarrow m=\dfrac{5}{4}\)