Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
Áp dụng hệ thức Vi-et, ta có :
\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-\left(2m+3\right)\end{cases}}\)
Đặt \(A=\left|\frac{x_1+x_2}{x_1-x_2}\right|\ge0\). A đạt giá trị nhỏ nhất \(\Leftrightarrow A^2\)đạt giá trị nhỏ nhất.
Ta có : \(A^2=\left(\frac{x_1+x_2}{x_1-x_2}\right)^2=\frac{\left(x_1+x_2\right)^2}{\left(x_1+x_2\right)^2-4x_1.x_2}=\frac{4\left(m+1\right)^2}{4\left(m+1\right)^2+4\left(2m+3\right)}=\frac{4\left(m+1\right)^2}{4m^2+16m+16}=\frac{\left(m+1\right)^2}{\left(m+2\right)^2}\ge0\)
Suy ra \(MinA^2=0\Leftrightarrow m=-1\)
Vậy Min A = 0 \(\Leftrightarrow\)m = -1
ở bài này phải chỉ ra \(\Delta'\)lớn hơn hoặc bằng 0 , hoặc chỉ ra a và c trái dấu nên phương trình có 2 nghiệm x1,x2 thì mới được áp dụng hệ thức Viét
b) Để phương trình có nghiệm thì \(\Delta'=\left(-m\right)^2-\left(m-1\right)\ge0\Leftrightarrow m^2-m+1\ge0\)
Điều này hiển nhiên vì \(m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall m\)
Theo đề bài suy ra \(x_1+x_2+2\sqrt{x_1x_2}=4\) (bình phương hai vế của giả thiết)
Chị thay tiếp vô hệ thức Viet và em không chắc.
Xét \(\Delta^,=\left(-m\right)^2-\left(m-1\right)\)\(=m^2-m+1\)
\(=(m^2-2\cdot m\cdot\frac{1}{2}+\frac{1}{4})+\frac{3}{4}\)\(=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với mọi m
Theo Vi- ét :\(\hept{\begin{cases}x_1+x_2=2m\\x_1\cdot x_2=m-1\end{cases}}\)(1)
Theo bài ra ta có : \(\sqrt{x_1}+\sqrt{x_2}=2\)
\(\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=4\)\(\Leftrightarrow x_1+2\sqrt{x_1\cdot x_2}+x_2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)+2\sqrt{x_1\cdot x_2}=4\)(*)
Thay (1) vào (*) ta được :
\(2m+2\sqrt{m-1}=4\)\(\Leftrightarrow2\sqrt{m-1}=4-2m\)
\(\Leftrightarrow\sqrt{m-1}=2-m\)\(\Leftrightarrow\sqrt{m-1}^2=\left(2-m\right)^2\)
\(\Leftrightarrow|m-1|=4-4m+m^2\)
\(\Leftrightarrow\orbr{\begin{cases}m-1=4-4m+m^2\\m-1=-4+4m-m^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m^2-5m+5=0\left(2\right)\\m^2-3m+3=0\left(3\right)\end{cases}}\)
\(\Delta_{\left(2\right)}=\left(-5\right)^2-4\cdot5=5>0\)
=> Phương trình có 2 nghiệm phân biệt
\(m_1=\frac{5+\sqrt{5}}{2};m_2=\frac{5-\sqrt{5}}{2}\)
\(\Delta_{\left(3\right)}=\left(-3\right)^2-4\cdot3=-3< 0\)
=> phương trình vô nghiệm
KL : ....
kb vs mk nha
\(\text{Δ}=\left(m+3\right)^2-4m^2\)
\(=m^2+6m+9-4m^2=-3m^2+6m+9\)
\(=-3\left(m^2-2m-3\right)=-3\left(m-3\right)\left(m+1\right)\)
Để phương trình có hai nghiệm phân biệt thì (m-3)(m+1)<0
=>-1<m<3
b:\(\Leftrightarrow x1+x2+2\sqrt{x_1x_2}=5\)
\(\Leftrightarrow m+3+2\sqrt{m^2}=5\)
=>2|m|=5-m-3=2-m
TH1: m>=0
=>2m=2-m
=>3m=2
=>m=2/3(nhận)
TH2: m<0
=>-2m=2-m
=>-2m+m=2
=>m=-2(loại)
c: P(x1)=P(x2)
=>\(x_1^3+a\cdot x_1^2+b=x_2^3+a\cdot x_2^2+b\)
=>\(\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)+a\left(x_1-x_2\right)\left(x_1+x_2\right)=0\)
=>(x1-x2)(x1^2+x1x2+x2^2+ax1+ax2)=0
=>x=0 và a=0
=>\(\left\{{}\begin{matrix}a=0\\b\in R\end{matrix}\right.\)
a, Với \(m=\sqrt{2}\) thì pt trở thành
\(x^2-2x-2\sqrt{2}+1=0\)
Ta có \(\Delta'=1+2\sqrt{2}-1=2\sqrt{2}>0\)
Nên pt có 2 nghiệm phân biệt
\(\orbr{\begin{cases}x=1-\sqrt{2\sqrt{2}}\\x=1+\sqrt{2\sqrt{2}}\end{cases}}\)
b, Ta có \(\Delta'=1+2m-1=2m\)
Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow m\ge0\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-2m+1\end{cases}}\)
Ta có \(x_2^2\left(x_1^2-1\right)+x_1^2\left(x_2^2-1\right)=8\)
\(\Leftrightarrow\left(x_1x_2\right)^2-x_2^2+\left(x_1x_2\right)^2-x_1^2=8\)
\(\Leftrightarrow2\left(x_1x_2\right)^2-\left(x_1+x_2\right)^2+2x_1x_2=8\)
\(\Leftrightarrow2\left(-2m+1\right)^2-2^2+2\left(-2m+1\right)=8\)
\(\Leftrightarrow2\left(4m^2-4m+1\right)-4-4m+2=8\)
\(\Leftrightarrow8m^2-8m+2-4m-10=0\)
\(\Leftrightarrow8m^2-12m-8=0\)
\(\Leftrightarrow2m^2-3m-2=0\)
\(\Leftrightarrow\left(m-2\right)\left(2m+1\right)=0\)
\(\Leftrightarrow m=2\left(Do\cdot m>0\right)\)
\(\Delta=\left(2m+5\right)^2-4\left(2m+1\right)=4m^2+12m+21=\left(2x+3\right)^2+12>0\)
Phương trình luôn có 2 nghiệm pb
Để biểu thức đề bài có nghĩa \(\Rightarrow\left\{{}\begin{matrix}x_1\ge0\\x_2\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m+5>0\\x_1x_2=2m+1\ge0\end{matrix}\right.\) \(\Rightarrow m\ge-\frac{1}{2}\)
\(P=\left|\sqrt{x_1}-\sqrt{x_2}\right|\Rightarrow P^2=x_1+x_2-2\sqrt{x_1x_2}\)
\(P^2=2m+5-2\sqrt{2m+1}\)
\(P^2=2m+1-2\sqrt{2m+1}+1+4\)
\(P^2=\left(\sqrt{2m+1}-1\right)^2+4\ge4\)
\(\Rightarrow P\ge2\Rightarrow P_{min}=2\) khi \(\sqrt{2m+1}=1\Rightarrow m=0\)
ĐK: \(x\ge2\)
\(pt\Leftrightarrow x^2+mx=x-2\)
\(\Leftrightarrow x^2+\left(m-1\right)x+2=0\)
Phương trình có hai nghiệm \(\Leftrightarrow\Delta=m^2-2m-7\ge0\Leftrightarrow\left[{}\begin{matrix}m\le1-2\sqrt{2}\\m\ge1+2\sqrt{2}\end{matrix}\right.\)
Theo định lí Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1.x_2=2\end{matrix}\right.\)
\(x_1+x_2=3x_1x_2\)
\(\Leftrightarrow1-m=6\)
\(\Leftrightarrow m=-5\left(tm\right)\)