Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x1^2+x2^2=(x1+x2)^2-2x1x2
x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)
áp dụng viét thay vô
b) giải hệ pt
đenta>=0
x1+x2=-m
x1x2=m+3
và 2x1+3x2=5
c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại
d)áp dụng viét
x1+x2=-m
x1x2=m+3
CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3
a) \(\Delta\)= b2-4ac=\([-2\left(m-1\right)\)2-4.1.(m-3)
=4(m2-2m+1)-4m+12
=4m2-12m+16=(2m-3)2+7>0
Vậy pt luôn có 2 nghiệm phân biệt với mọi m
b)Vì pt luôn có 2 nghiệm phân biệt với m
Theo vi ét ta có:x1+x2=\(\frac{-b}{a}\)= 2m-2=S (1)
x1.x2=\(\frac{c}{a}\)=m-3=P (2)
Từ(1)\(\Rightarrow2m=S+2\)
\(\Rightarrow m=\frac{S+2}{2}\left(3\right)\)
Từ(2)\(\Rightarrow m=P-3\left(4\right)\)
Từ (3) và(4)\(\Rightarrow\frac{S+2}{2}=P-3\)
\(\Leftrightarrow S+2-2P+6=0\)
\(\Leftrightarrow S-P+8=0\)
Do đó\(\Leftrightarrow\left(x_1+x_2\right)-\left(x._1.x_2\right)+8=0\left(đfcm\right)\)
1. \(2x^2-\left(3m+1\right)x+m^2-m-6=0\)
\(\Delta=b^2-4ac=\left[-\left(3m+1\right)\right]^2-4.2.\left(m^2-m-6\right)=9m^2+6m+1-8m^2+8m+48=m^2+14m+49=\left(m+7\right)^2\ge0\forall m\)
=> PT có 2 nghiệm với mọi m.
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-\left(3m+1\right)\right]}{2}=\dfrac{3m+1}{2}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{m^2-m-6}{2}\end{matrix}\right.\)
Để pt có 2 nghiệm trái dấu \(\Leftrightarrow P< 0\)
\(\Rightarrow\dfrac{m^2-m-6}{2}< 0\Leftrightarrow m^2-m-6< 0\Leftrightarrow-2< m< 3\)
Vậy -2<m<3 thì pt có 2 nghiệm trái dấu.
2. \(mx^2+2\left(m-4\right)x+m+7=0\)
\(\Delta=b^2-4ac=\left[2\left(m-4\right)\right]^2-4.m.\left(m+7\right)=4\left(m^2-8m+16\right)-4m^2-28m=4m^2-32m+64-4m^2-28m=-60m+64\)
Để pt có 2 nghiệm \(\Leftrightarrow\Delta\ge0\)
\(\Rightarrow-60m+64\ge0\Leftrightarrow m\le\dfrac{16}{15}\)
=> PT có 2 nghiệm với \(m\le\dfrac{16}{15}\)
Theo Vi-ét, ta có:
\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{-2\left(m-4\right)}{m}=\dfrac{-2m+8}{m}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{m+7}{m}\end{matrix}\right.\)
Ta có hpt: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+8}{m}\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+8}{m}\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\left(2x_2+x_2\right)=-2m+8\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3mx_2=-2m+8\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-2m+8}{3m}\\x_1=2.\dfrac{-2m+8}{3m}\end{matrix}\right.\)
Thay \(x_1;x_2\) vào P:
\(\dfrac{2\left(-2m+8\right)}{3m}.\dfrac{-2m+8}{3m}=\dfrac{m+7}{m}\Leftrightarrow\dfrac{2\left(8-2m\right)^2}{9m^2}-\dfrac{m+7}{m}=0\Leftrightarrow\dfrac{2\left(64-32m+4m^2\right)}{9m^2}-\dfrac{9m\left(m+7\right)}{9m^2}=0\Leftrightarrow\dfrac{128-64m+8m^2-9m^2-63m}{9m^2}=0\Leftrightarrow-m^2-127m+128=0\)(1)
Ta có: a+b+c=-1-127+128=0
=> PT (1) có 2 nghiệm \(m_1=1\left(nhận\right);m_2=\dfrac{c}{a}=\dfrac{128}{-1}=-128\left(nhận\right)\)
Vậy m=1;m=-128 thì pt đề cho có 2 nghiệm thỏa đề bài.
3. \(x^2+\left(4m+1\right)x+2\left(m-4\right)=0\)
\(\Delta=b^2-4ac=\left(4m+1\right)^2-4.1.\left[2\left(m-4\right)\right]=16m^2+8m+1-8m+32=16m^2+33>0\forall m\) => PT luôn có 2 nghiệm phân biệt với mọi m.
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(4m+1\right)}{1}=-4m-1\\P=x_1x_2=\dfrac{c}{a}=\dfrac{2\left(m-4\right)}{1}=2m-8\end{matrix}\right.\)
Ta có hpt: \(\left\{{}\begin{matrix}x_1+x_2=-4m-1\\x_1x_2=2m-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-4m-1\\2x_1x_2=4m-16\end{matrix}\right.\Leftrightarrow x_1+x_2+2x_1x_2=-17\)
a) Ta có:
\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\)
Mà \(\left(m-4\right)^2\ge0\Leftrightarrow\Delta\ge0\)với mọi m
Vậy phương trình luôn có nghiệm với mọi m
b) Áp dụng hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=-m\\x_1.x_2=2m-4\end{cases}}\)
Ta có: \(A=\frac{x_1.x_2}{x_1+x_2}=\frac{2m-4}{-m}=\frac{2m}{-m}-\frac{4}{-m}=-2+\frac{4}{m}\)
Để A đạt giá trị nguyên thì 4/m đạt giá trị nguyên <=> m là ước của 4
Mà m nguyên dương nên m = 1; 2; 4
Vậy m = 1; 2; 4
a) Thay m=-2 vào pt (1)
=> \(x^2-2x+1\)=0
<=> x=1
b) x1,x2 là 2 nghiệm của pt
=> \(\Delta\ge0\)
<=> \(m^2-4\left(-2m-3\right)\ge0\)
<=> \(\left[{}\begin{matrix}m\le-6\\m\ge-2\end{matrix}\right.\)
Áp dụng hệ thức Vi-ét ta có:
\(x_1+x_2=-m\)(1)
\(x_1.x_2=-2m-3\)(2)
Từ (1) => \(m=-x_1-x_2\) Thay vào (2) ta có:
\(x_1.x_2=-2\left(-x_1-x_2\right)-3\)
<=> \(2x_1+2x_2-x_1.x_2-3=0\)
Vậy hệ thức trên k phụ thuộc vào m