Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x1^2+x2^2=(x1+x2)^2-2x1x2
x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)
áp dụng viét thay vô
b) giải hệ pt
đenta>=0
x1+x2=-m
x1x2=m+3
và 2x1+3x2=5
c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại
d)áp dụng viét
x1+x2=-m
x1x2=m+3
CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3
\(\Delta=\left(-m\right)^2-4.1\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)
=>pt (*) luôn có 2 nghiệm x1,x2 với mọi m
Theo viet ta có: \(x_1+x_2=m;x_1x_2=m-1\)
Ta có: \(\left|x_1-x_2\right|< 3\Leftrightarrow x_1^2-2x_1x_2+x_2^2< 9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 9\)
\(\Leftrightarrow m^2-4\left(m-1\right)< 9\Leftrightarrow m^2-4m+4< 9\)
\(\Leftrightarrow m^2-4m-5< 0\Leftrightarrow\left(m-5\right)\left(m+1\right)< 0\Leftrightarrow-1< m< 5\)
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
a, Dễ quá bỏ qua .
b, Ta có : \(x^2-2\left(m+1\right)x+4m=0\)
=> \(\Delta^,=b^{,2}-ac=\left(m+1\right)^2-4m=m^2+2m+1-4m\)
=> \(\Delta^,=m^2-2m+1=\left(m-1\right)^2\ge0\)
Nên phương trình có 2 nghiệm .
- Theo vi ét có : \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2\left(m+1\right)\\x_1x_2=\frac{c}{a}=4m\end{matrix}\right.\)
- Để \(\left(x_1+3\right)\left(x_2+3\right)=3m^2+12\)
<=> \(x_1x_2+3x_1+3x_2+9=3m^2+12\)
<=> \(x_1x_2+3\left(x_1+x_2\right)+9=3m^2+12\)
<=> \(4m+6\left(m+1\right)+9=3m^2+12\)
<=> \(3m^2-10m-3=0\)
<=> \(\left[{}\begin{matrix}m=\frac{5-\sqrt{34}}{3}\\m=\frac{5+\sqrt{34}}{3}\end{matrix}\right.\)
Vậy ........
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)