K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Đề bị lỗi công thức rồi. Bạn coi lại đề.

12 tháng 3 2022

bạn viết lại bth nhé 

\(\Delta=25-4\left(-3\right).2=25+24=49>0\)

Vậy pt luôn có 2 nghiệm pb 

26 tháng 4 2021

Phương trình có 2 nghiệm x1, x2 ⇔ △ ≥ 0 ⇔ m2 - 4m + 4 ≥ 0 ⇔ (m-2)2 ≥ 0  ⇔ m ∈ R

Theo hệ thức Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=m-1\end{matrix}\right.\)

=> P = \(\dfrac{2x_1.x_2+3}{x_1^2+x_2^2+2\left(1+x_1.x_2\right)}=\dfrac{2x_1.x_2+3}{x_1^2+x_2^2+2x_1.x_2+2}\)

                                                    = \(\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}\)

                                                    = \(\dfrac{2\left(m-1\right)+3}{m^2+2}\) 

                                                    = \(\dfrac{2m+1}{m^2+2}\)

=> P(m2 + 2) = 2m + 1 => Pm2 - 2m + 2P - 1 = 0 (*)

Để m tồn tại thì phương trình (*) có nghiệm ⇔ △' ≥ 0

                                                                      ⇔ 1 - P(2P - 1) ≥ 0

                                                                       ⇔ 1 - 2P2 + P ≥ 0

                                                                       ⇔ (1 - P)(2P + 1) ≥ 0

                                                                       ⇔ \(-\dfrac{1}{2}\) ≤ P ≤ 1

P = \(-\dfrac{1}{2}\) ⇔ m = -2; P = 1 ⇔ m = 1

Vậy minP = \(-\dfrac{1}{2}\) ⇔ m = -2 ; maxP = 1 ⇔ m = 1

NV
21 tháng 3 2021

\(\Delta=\left(m+4\right)^2-4\left(m-1\right)=\left(m+2\right)^2+16>0;\forall m\)

Kết hợp hệ thức Viet và điều kiện đề bài:

\(\left\{{}\begin{matrix}x_1+x_2=m+4\\2x_1+3x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x_1+3x_2=3m+12\\2x_1+3x_2=7\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=3m+5\\x_2=-2m-1\end{matrix}\right.\)

Mặt khác: \(x_1x_2=m-1\)

\(\Rightarrow\left(3m+5\right)\left(-2m-1\right)=m-1\)

\(\Leftrightarrow6m^2+14m+4=0\Rightarrow\left[{}\begin{matrix}m=-2\\m=-\dfrac{1}{3}\end{matrix}\right.\)

Cho phương trình: [tex]2x^{^{2}}-4x+m-1=0[/tex]. Tính m để phương trình có hai nghiệm phân biệt [tex]x_{1},x _{2}[/tex] thỏa mãn điều kiện [tex]x_{1}=-2x_{2}[/tex].(Bài này mình có làm rồi, nhưng bạn mình (một người học rất giỏi) lại nói sai nhưng mình lại thấy nó không sai ở đâu cả, mình đăng lời giải lên đây để mong các bạn giúp mình tìm ra lỗi sai đó. Cảm ơn các bạn trước) Ta...
Đọc tiếp

Cho phương trình: [tex]2x^{^{2}}-4x+m-1=0[/tex]. Tính m để phương trình có hai nghiệm phân biệt [tex]x_{1},x _{2}[/tex] thỏa mãn điều kiện [tex]x_{1}=-2x_{2}[/tex].

(Bài này mình có làm rồi, nhưng bạn mình (một người học rất giỏi) lại nói sai nhưng mình lại thấy nó không sai ở đâu cả, mình đăng lời giải lên đây để mong các bạn giúp mình tìm ra lỗi sai đó. Cảm ơn các bạn trước)

 

Ta có: [tex]x_{1}=-2x _{2}[/tex]

[tex]\Rightarrow x_{1}+2x_{2}=0[/tex] 

[tex]\Leftrightarrow x_{1}+x_{2}=-x_{2}[/tex] 

[tex]\Leftrightarrow S=-x _{2}[/tex] [tex]\Rightarrow x_{1}=2S[/tex] 

Ta có:[tex]x_{1}.x_{2}=2S.(-S)[/tex]

[tex]\Leftrightarrow P=-2S^{2}[/tex]

[tex]\Leftrightarrow \frac{m-1}{2}=-2(-\frac{(-4)}{2})^2[/tex]

[tex]\Leftrightarrow \frac{m-1}{2}=-2.4=-8[/tex] 

[tex]\Leftrightarrow m-1=-16[/tex]

[tex]\Leftrightarrow m=-15[/tex] 

Vậy m=-15 thì thỏa mãn điều kiện

4
18 tháng 3 2019

Lỗi front rồi bạn ơi!

18 tháng 3 2019

để mình giúp bạn làm câu khác ko lỗi

13 tháng 7 2017

a. Pt(1) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=4\left(m-1\right)^2-4.m^2=4\left(m^2-2m+1\right)-4m^2=-8m+4>0\)

\(\Rightarrow m< \frac{1}{2}\)

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m^2\end{cases}}\)

Từ \(x_1^2+x_2^2-3.x_1.x_2+3=0\Rightarrow\left(x_1+x_2\right)^2-5.x_1.x_2+3=0\)

\(\Rightarrow4\left(m^2-2m+1\right)-5m^2+3=0\Rightarrow-m^2-8m+7=0\)

\(\Rightarrow\orbr{\begin{cases}m=-4-\sqrt{23}\\m=-4+\sqrt{23}\left(l\right)\end{cases}}\)

Vậy \(m=-4-\sqrt{23}\)