\(x^2-2mx+3m-4=0\) ( m là tham số )

Tìm hệ thức giữa 2 nghiệm độc lập v...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 11 2019

a/ Thay \(x=0\) vào pt ta được:

\(m^2-3m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)

- Khi \(m=0\Rightarrow x^2+2x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

- Khi \(m=3\Rightarrow x^2-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

b/ Theo định lý Viet:

\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\frac{x_1+x_2+2}{2}\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(\Rightarrow x_1x_2=\left(\frac{x_1+x_2+2}{2}\right)^2-\frac{3}{2}\left(x_1+x_2+2\right)\)

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

 Theo đ

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

Theo đề bài thì

\(x^2_2+x^2_1\ge10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)

Làm tiếp sẽ ra. Câu còn lại tương tự 

3 tháng 5 2020

đoạn cuối là m + 1 hay  m + 11 vậy bạn

3 tháng 5 2020

Xét 

\(\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m+1\right)=m^2-6m+9-m^2-1=-6m+7\ge0\)

\(\Rightarrow m\le\frac{7}{6}\)

Theo Viete ta có:\(x_1+x_2=\frac{2\left(m-3\right)}{m-1}\left(1\right);x_1x_2=\frac{m+1}{m-1}\)

\(\Leftrightarrow x_1x_2\left(m-1\right)=m+1\Leftrightarrow x_1x_2m-m=1+x_1x_2\)

\(\Leftrightarrow m\left(x_1x_2-1\right)=1+x_1x_2\Leftrightarrow m=\frac{1+x_1x_2}{x_1x_2-1}\)

Thay vào ( 1 ) rồi rút gọn là OK nhá,nhác ko muốn tính :))

23 tháng 4 2020

ĐK:\(m\ne1\)

Phương trình có 2 nghiệm \(\Leftrightarrow\)đen-ta\(\ge0.\)

\(\Leftrightarrow4m^2-24m+36-4m^2+4\ge0.\)

\(\Leftrightarrow-24m+40\ge0.\)

\(\Leftrightarrow m\le\frac{5}{3}.\)

Học tốt

23 tháng 4 2020

ý 2 nek: áp dụng hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=\frac{2m-6}{m-1}\\x_1x_2=\frac{m+1}{m-1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2-\frac{4}{m-1}\\x_1x_2=1-\frac{2}{m-1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2-\frac{4}{m-1}\\2x_1x_2=2-\frac{4}{m-1}\end{cases}}\)

x1+x2-2x1x2=0.

vậy x1,x2 độc lập đối với m

học tốt

23 tháng 4 2020

ĐK; m\(\ne1\)

Đen-ta\(=4m^2-4m^2+4=4>0.\)

vậy pt có 2 nghiệm phân biệt. Áp dụng hệ thức vi-et:

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}=\frac{2m-2+2}{m-1}=2+\frac{2}{m-1}\\x_1x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

\(x_1+x_2-x_1x_2=1\)

vậy nghiệm của pt không phụ thuộc m

Học tốt

26 tháng 6 2020

a, \(\Delta"=m^2-m^2+9=9>0\)

=> pt luôn có 2 nghiệm pb với mọi m

b, Theo hệ thức vi -ét , ta có

x1 + x2 = 2m , x1.x2 = m2 - 9

Ta có x22 = 18 - x1.(x2 + x1)

x22 + x12 + x1.x2 - 18 = 0

(x1 + x2 )2 - x1.x2 - 18 =0

4m2 - m2 + 9 - 18 = 0

3m2 = 9

=> m = \(\pm\sqrt{3}\)

c, \(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=m^2-9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=\frac{x1+x2}{2}\\x1.x2=m^2-9\end{matrix}\right.\)

=> x1.x2= \(\frac{\left(x1+x2\right)^2}{4}-9\)

#mã mã#

22 tháng 6 2017

Để pt có no thì: \(\Delta'\ge0\Leftrightarrow m^2+2\ge0\) (đúng \(\forall m\))

theo viet, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m^2-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x_1+x_2}{2}=m\\x_1x_2=-\left(\dfrac{x_1+x_2}{2}\right)^2-1\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{x_1+x_2}{2}\right)^2+1+x_1x_2=0\)

3 tháng 6 2019

\(\Delta^`\ge0\)

\(\Leftrightarrow m^2-\left(m^2-2\right).2\ge0\)

\(\Leftrightarrow4-m^2\ge0\)

\(\Leftrightarrow4\ge m^2\)

\(\Leftrightarrow4\ge m^2\)

\(\Leftrightarrow-2\le m\le2\)

3 tháng 6 2019

Theo hệ thức Viet có:

\(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=\frac{m^2-2}{2}\end{cases}}\)

\(\Rightarrow A=\left|2x_1.x_2-x_1-x_2-4\right|=\left|m^2-m-6\right|=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|\)

Có:

\(\left(m-\frac{1}{2}\right)^2\le\left(-2-\frac{1}{2}\right)^2=6,25\)

\(\Rightarrow A=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|=6,25-\left(m-\frac{1}{2}\right)^2\le6,25\)

\(A=6,25\Leftrightarrow m=\frac{1}{2}\left(tm\right)\)

KL:..............................................