Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) ta có : \(N=\dfrac{\sqrt{8-\sqrt{15}}}{\sqrt{30}-\sqrt{2}}=\dfrac{\sqrt{16-2\sqrt{15}}}{\sqrt{2}\left(\sqrt{30}-\sqrt{2}\right)}=\dfrac{\sqrt{\left(\sqrt{15}-1\right)^2}}{2\left(\sqrt{15}-1\right)}\)
\(=\dfrac{\sqrt{15}-1}{2\left(\sqrt{15}-1\right)}=\dfrac{1}{2}\)
+) ta có : \(P=\left(\dfrac{8-x\sqrt{x}}{2-\sqrt{x}}+2\sqrt{x}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2\)
\(\Leftrightarrow P=\left(\dfrac{\left(2-\sqrt{x}\right)\left(4+2\sqrt{x}+x\right)}{2-\sqrt{x}}+2\sqrt{x}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2\) \(\Leftrightarrow P=\left(4+2\sqrt{x}+x+2\sqrt{x}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2\) \(\Leftrightarrow P=\left(2+\sqrt{x}\right)^2\dfrac{\left(2-\sqrt{x}\right)^2}{\left(2+\sqrt{x}\right)^2}=\left(2-\sqrt{x}\right)^2\)
<=>N=\(\dfrac{\sqrt{16-2\sqrt{15}}}{\sqrt{60}-2}\)
<=>N=\(\dfrac{\sqrt{\left(\sqrt{15}-1\right)^2}}{2\sqrt{15}-2}\)
<=>N=\(\dfrac{\sqrt{15}-1}{2\left(\sqrt{15}-1\right)}\)
<=>N=\(\dfrac{1}{2}\)
P=\(\left(\dfrac{8-x\sqrt{x}}{2-\sqrt{x}}+2\sqrt{x}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2\)
P=\(\left(\dfrac{8-x\sqrt{x}+4\sqrt{x}-2x}{2-\sqrt{x}}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2\)
P=\(\dfrac{8+3\sqrt{x}+x}{2-\sqrt{x}}.\dfrac{\left(2-\sqrt{x}\right)^2}{\left(2+\sqrt{x}\right)^2}\)
P=\(\dfrac{\left(8+3\sqrt{x}+x\right)\left(2-\sqrt{x}\right)}{4+4\sqrt{x}+x}\)
Q=\(\dfrac{x\sqrt{x}-2x-4\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)+\(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
Q=\(\dfrac{x\sqrt{x}-2x-4\sqrt{x}+6-x+4\sqrt{x}-4+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
Q=\(\dfrac{x\sqrt{x}-2x+2-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)=\(\dfrac{\left(\sqrt{x}-2\right)\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
Q=\(\dfrac{x-1}{\sqrt{x}-1}=\sqrt{x}+1\)
\(Q=\dfrac{x\sqrt{x}-2x-4\sqrt{x}+6}{x-3\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{2-\sqrt{x}}=\dfrac{x\sqrt{x}-2x-4\sqrt{x}+6}{x-3\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{x\sqrt{x}-2x-4\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{x\sqrt{x}-2x-4\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}-\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}+\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{x\sqrt{x}-2x-4\sqrt{x}+6-x+4\sqrt{x}-4+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{x\sqrt{x}-2x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{x\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\sqrt{x}+1\)
a/ \(P=12\)
b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )
a. Thay x = 3 vào biểu thức P ta được :
\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)
b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c, Ta có :
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)
1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)
Làm nốt nè :3
\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{x-2}{2x}>0\)
\(\Leftrightarrow x-2>0\left(do:x>0\right)\)
\(\Leftrightarrow x>2\)
\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)
\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)
Kết hợp với DKXĐ : \(0< a< 1\)
1) \(M=\dfrac{10}{\sqrt{x}+2};M_{\left(16\right)}=\dfrac{10}{\sqrt{16}+2}=\dfrac{10}{6}=\dfrac{5}{3}\)
2)\(N=\dfrac{2\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-18}{x-4}=2+\dfrac{4}{\sqrt{x}-2}+\dfrac{\sqrt{x}-18}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=2+\dfrac{4\sqrt{x}+8+\sqrt{x}-18}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)\(N=2+\dfrac{5}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+9}{\sqrt{x}+2}\)
N khác 0 mọi x thuộc đk
\(\dfrac{M}{N}=M.\dfrac{1}{N}=\dfrac{10}{\sqrt{x}+2}.\dfrac{\sqrt{x}+2}{\left(2\sqrt{x}+9\right)}=\dfrac{10}{2\sqrt{x}+9}\)
\(\dfrac{M}{N}=\dfrac{12-\sqrt{x}}{13}=\dfrac{10}{2\sqrt{x}+9}\)
\(\Leftrightarrow\left(12-\sqrt{x}\right)\left(2\sqrt{x}+9\right)=130\)
\(15\sqrt{x}+12.9-2x=130\)
\(2x-15\sqrt{x}+22=0\)
\(\Delta_{\sqrt{x}}=15^2-4.2.22=137\)
\(\sqrt{x}=\dfrac{15+-\sqrt{137}}{4}\)
\(\left[{}\begin{matrix}x_1=\dfrac{181-15.\sqrt{137}}{8}\\x_2=\dfrac{181+15.\sqrt{137}}{8}\end{matrix}\right.\) tự kiểm tra số liểu (nhẩm tính có thể nhầm; thấy lẻ quá)
a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)
b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)
c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)
\(=\sqrt{x}+2-\sqrt{x}-2=0\)
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
Cho \(5\sqrt{x}7\) mk viet nham
Sua lai thanh \(5\sqrt{x}-7\)
a: \(A=\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{x}+3}{\left(2\sqrt{x}+1\right)}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)
b: Để A là số nguyên thì \(5\sqrt{x}⋮2\sqrt{x}+1\)
=>10 căn x+5-5 chia hết cho 2 căn x+1
=>\(2\sqrt{x}+1\in\left\{1;5\right\}\)
hay \(x\in\varnothing\)
\(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{2+5\sqrt{x}}{x-4}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2x-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
Ta có \(P=\dfrac{1}{2}\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}=\dfrac{1}{2}\Leftrightarrow6\sqrt{x}=\sqrt{x}+2\Leftrightarrow5\sqrt{x}=2\Leftrightarrow\sqrt{x}=\dfrac{2}{5}\Leftrightarrow x=\dfrac{4}{25}\left(tm\right)\)Vậy khi \(x=\dfrac{4}{25}\) thì \(P=\dfrac{1}{2}\)