K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 3 2023

\(\Delta=\left(2m+5\right)^2-4\left(m-1\right)=4m^2+16m+29=4\left(m+2\right)^2+13>0;\forall m\)

\(\Rightarrow\) Phương trình có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m-5\\x_1x_2=m-1\end{matrix}\right.\)

Ta có: \(2\left(x_1+x_2\right)=3x_1x_2\)

\(\Leftrightarrow2\left(-2m-5\right)=3\left(m-1\right)\)

\(\Leftrightarrow7m=-7\)

\(\Leftrightarrow m=-1\)

a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)

\(=4m^2+4m+1-4m^2-12m\)

\(=-8m+1\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow-8m+1>0\)

\(\Leftrightarrow-8m>-1\)

hay \(m< \dfrac{1}{8}\)

|x1|=3|x2|

=>|2m+2-x2|=|3x2|

=>4x2=2m+2 hoặc -2x2=2m+2

=>x2=1/2m+1/2 hoặc x2=-m-1

Th1: x2=1/2m+1/2

=>x1=2m+2-1/2m-1/2=3/2m+3/2

x1*x2=m^2+2m

=>1/2(m+1)*3/2(m+1)=m^2+2m

=>3/4m^2+3/2m+3/4-m^2-2m=0

=>m=1 hoặc m=-3

TH2: x2=-m-1 và x1=2m+2+m+1=3m+3

x1x2=m^2+2m

=>-3m^2-6m-3-m^2-2m=0

=>m=-1/2; m=-3/2

a: \(x^2-x-3m-2=0\)

\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-3m-2\right)\)

\(=1+12m+8=12m+9\)

Để phương trình có nghiệm kép thì Δ=0

=>12m+9=0

=>12m=-9

=>\(m=-\dfrac{3}{4}\)

Thay m=-3/4 vào phương trình, ta được:

\(x^2-x-3\cdot\dfrac{-3}{4}-2=0\)

=>\(x^2-x+\dfrac{1}{4}=0\)

=>\(\left(x-\dfrac{1}{2}\right)^2=0\)

=>\(x-\dfrac{1}{2}=0\)

=>\(x=\dfrac{1}{2}\)

b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-1\right)}{1}=1\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-3m-2}{1}=-3m-2\end{matrix}\right.\)

\(\left(x_1+x_2\right)^2-3x_1x_2\)

\(=1^2-3\left(-3m-2\right)\)

\(=1+9m+6=9m+7\)

c: \(\left(x_1+x_2\right)^2=1^2=1\)

d: \(\left(x_1\right)^2\cdot\left(x_2\right)^2=\left[x_1x_2\right]^2\)

\(=\left(-3m-2\right)^2\)

\(=9m^2+12m+4\)

24 tháng 3 2022

\(\Delta=4m^2+20m+25-8m-4=4m^2+12m+21=\left(2m+3\right)^2+12>0\)

 với mọi m => pt có 2 nghiệm phân biệt x1 và x2

theo Viet (điều kiện m > -1/2)

\(\left\{{}\begin{matrix}x1+x2=2m+5\\x1.x2=2m+1\end{matrix}\right.\)

\(p^2=x1-2\left|\sqrt{x1.x2}\right|+x2=2m+5-2\sqrt{2m+1}=\left(\sqrt{2m+1}-1\right)^2+3\ge3< =>p\ge\sqrt{3}\)

dấu bằng xảy ra khi \(\sqrt{2m+1}=1< =>m=0\left(tm\right)\)

24 tháng 2 2022

\(\Delta'=9-\left(2m-1\right)=-2m+10\)

Để pt có 2 nghiệm x1 ; x2 

\(10-2m\ge0\Leftrightarrow-2m\ge-10\Leftrightarrow m\le5\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-6\\x_1x_2=2m-1\end{matrix}\right.\)

Ta có : \(\left(x_1+x_2\right)\left(3-x_2+3-x_1\right)+2016=0\)

\(\Leftrightarrow\left(x_1+x_2\right)\left[6-\left(x_1+x_2\right)\right]+2016=0\)

bạn kiểm tra lại đề 

Vì \(a\cdot c=1\cdot\left(-2\right)=-2< 0\)

nên phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m\\x_1x_2=\dfrac{c}{a}=-2\end{matrix}\right.\)

Sửa đề: \(x_1^2\cdot x_2+x_1\cdot x_2^2+7>x_1^2+x_2^2+\left(x_1+x_2\right)^2\)

=>\(x_1x_2\left(x_1+x_2\right)+7>\left(x_1+x_2\right)^2-2x_1x_2+\left(x_1+x_2\right)^2\)

=>\(-2m+7>m^2-2\left(-2\right)+m^2\)

=>\(2m^2+4< -2m+7\)

=>\(2m^2+2m-3< 0\)

=>\(\dfrac{-1-\sqrt{7}}{2}< m< \dfrac{-1+\sqrt{7}}{2}\)

\(\text{Δ}=\left[-\left(m+1\right)\right]^2-4\cdot1\cdot m\)

\(=\left(m+1\right)^2-4m\)

\(=\left(m-1\right)^2>=0\forall m\)

=>Phương trình luôn có hai nghiệm

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m+1\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

\(x_1^2+x_2^2=\left(x_1-1\right)\left(x_2-1\right)-x_1-x_2+5\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2=x_1x_2-2\left(x_1+x_2\right)+6\)

=>\(\left(m+1\right)^2-2m=m-2\left(m+1\right)+6\)

=>\(m^2+1=m-2m-2+6\)

=>\(m^2+1=-m+4\)

=>\(m^2+m-3=0\)

=>\(m=\dfrac{-1\pm\sqrt{13}}{2}\)

Đề sai rồi bạn