K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2023

a. Em tự giải

b. Pt có 2 nghiệm khi \(\Delta=9-4\left(m-4\right)\ge0\Rightarrow m\le\dfrac{25}{4}\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=m-4\end{matrix}\right.\)

c.

\(x_1^3+x_2^3=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=8\)

\(\Leftrightarrow\left(-3\right)^3-3.\left(-3\right).\left(m-4\right)=8\)

\(\Leftrightarrow m=\dfrac{71}{9}\)

15 tháng 5 2023

cho pt: x2 + 4(m - 1)x-12=0 (1)

tìm m để pt (1) có 2no phân biệt x1,x2 thỏa mãn: |x1 - 2| . √4-mx2 = 4

a) Ta có: \(\text{Δ}=\left(2m\right)^2-4\cdot1\cdot\left(-3m-2\right)=4m^2+12m+8=4m^2+12m+9-1=\left(2m+3\right)^2-1\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow\left(2m+3\right)^2>1\)

\(\Leftrightarrow\left[{}\begin{matrix}2m+3>1\\2m+3< -1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m>-2\\2m< -4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1\cdot x_2=-3m-2\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\2x_1-3x_2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=-4m\\2x_1-3x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x_2=-4m-1\\x_1+x_2=-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-4m-1}{5}\\x_1=-2m+\dfrac{4m+1}{5}=\dfrac{-6m+1}{5}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=-3m-2\)

\(\Leftrightarrow\dfrac{-4m-1}{5}\cdot\dfrac{-6m+1}{5}=-3m-2\)

\(\Leftrightarrow\left(-4m-1\right)\left(-6m+1\right)=25\left(-3m-2\right)\)

\(\Leftrightarrow24m^2-4m+6m-1=-75m+50\)

\(\Leftrightarrow24m^2+2m-1+75m-50=0\)

\(\Leftrightarrow24m^2+77m-51=0\)

Đến đây bạn tự làm nhé

10 tháng 9 2021

bạn giải hay quá

 

28 tháng 4 2019

Ta có \(\Delta'=\left(m-2\right)^2+m-2\)

                \(=m^2-4m+4+m-2\)

                 \(=m^2-3m+2\)

Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow\orbr{\begin{cases}m< 1\\m>2\end{cases}}\)

Teo Vi-et \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1x_2=-m+2\end{cases}}\)

Ta có \(x_1+2x_2=2\)

\(\Leftrightarrow\left(x_1+x_2\right)+x_2=2\)

\(\Leftrightarrow2\left(m-2\right)+x_2=2\)

\(\Leftrightarrow2m-4+x_2=2\)

\(\Leftrightarrow x_2=6-2m\)

Ta có \(x_1+x_2=2\left(m-2\right)\)

\(\Leftrightarrow x_1+6-2m=2m-4\)

\(\Leftrightarrow x_1=4m-10\)

Thay vào tích x1 . x2 được

\(x_1x_2=-m+2\)

\(\Leftrightarrow\left(4m-10\right)\left(6-2m\right)=-m+2\)

\(\Leftrightarrow24m-8m^2-60+20m=-m+2\)

\(\Leftrightarrow8m^2-45m+62=0\)

Có \(\Delta=41\)

\(\Rightarrow\orbr{\begin{cases}m=\frac{45-\sqrt{41}}{16}\left(tm\right)\\m=\frac{45+\sqrt{41}}{16}\left(tm\right)\end{cases}}\)

NV
28 tháng 4 2021

Pt có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m\ne0\\\Delta=9\left(m+1\right)^2-4m\left(2m+4\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+2m+9\ge0\left(luôn-đúng\right)\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3\left(m+1\right)}{m}\\x_1x_2=\dfrac{2m+4}{m}\end{matrix}\right.\)

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{9\left(m+1\right)^2}{m^2}-\dfrac{2\left(2m+4\right)}{m}=4\)

\(\Leftrightarrow9\left(m+1\right)^2-2m\left(2m+4\right)=4m^2\)

\(\Leftrightarrow m^2+10m+9=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\)