Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.
Khi \(m=\dfrac{5}{2}\) pt trở thành pt bậc nhất nên chỉ có 1 nghiệm (loại)
Xét với \(m\ne\dfrac{5}{2}\):
\(\Delta'=\left(m-1\right)^2-3\left(2m-5\right)=m^2-8m+16=\left(m-4\right)^2\)
Pt đã cho luôn có 2 nghiệm \(\forall m\ne\dfrac{5}{2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1x_2=\dfrac{3}{2m-5}\end{matrix}\right.\)
Két hợp Viet với điều kiện đề bài:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1-x_2=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{8m-17}{2\left(2m-5\right)}\\x_2=\dfrac{-4m+13}{2\left(2m-5\right)}\end{matrix}\right.\)
Thế vào \(x_1x_2=\dfrac{3}{2m-5}\)
\(\Rightarrow\dfrac{\left(8m-17\right)\left(-4m+13\right)}{4\left(2m-5\right)^2}=\dfrac{3}{2m-5}\)
\(\Rightarrow32m^2-148m+161=0\)
\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{7}{4}\\m=\dfrac{23}{8}\end{matrix}\right.\)
a/ \(m=4\to x^2-8x+7=0\\\leftrightarrow x^2-7x-x+7=0\\\leftrightarrow x(x-7)-(x-7)=0\\\leftrightarrow (x-1)(x-7)=0\\\leftrightarrow x-1=0\quad or\quad x-7=0\\\leftrightarrow x=1\quad or\quad x=7\)
b/ Pt có 2 nghiệm phân biệt
\(\to \Delta=(-2m)^2-4.1.(2m-1)=4m^2-8m+4=4(m^2-2m+1)=4(m-1)^2\ge 0\)
\(\to m\in \mathbb R\)
c/ Theo Viét
\(\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}\)
Tổng bình phương các nghiệm là 10
\(\to x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1x_2=(2m)^2-2.(2m-1)=4m^2-4m+2\)
\(\to 4m^2-4m+2=10\)
\(\leftrightarrow 4m^2-4m-8=0\)
\(\leftrightarrow m^2-m-2=0\)
\(\leftrightarrow m^2-2m+m-2=0\)
\(\leftrightarrow m(m-2)+(m-2)=0\)
\(\leftrightarrow (m+1)(m-2)=0\)
\(\leftrightarrow m+1=0\quad or\quad m-2=0\)
\(\leftrightarrow m=-1(TM)\quad or\quad m=2(TM)\)
Vậy \(m\in\{-1;2\}\)
Phương trình có 2 nghiệm khi:
\(\Delta=m^2-12\left(2m+1\right)\ge0\Leftrightarrow m^2-24m-12\ge0\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m}{3}\\x_1x_2=\dfrac{2m+1}{3}\end{matrix}\right.\)
Tích 2 nghiệm bằng -3 khi:
\(\dfrac{2m+1}{3}=-3\Rightarrow2m+1=-9\)
\(\Rightarrow m=-5\)
Khi đó tổng 2 nghiệm là: \(x_1+x_2=\dfrac{m}{3}=-\dfrac{5}{3}\)
a/ \(\Delta =(-2m)^2-4.1.(2m-3)=4m^2-8m+12=4m^2-8m+4+8=(2m-2)^2+8>0\)
\(\to\) Pt có nghiệm với mọi m
Theo Viét
\(\begin{cases}x_1+x_2=2m\\x_1x_2=2m-3\end{cases}\)
\(x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1x_2\\=(2m)^2-2.(2m-3)\\=4m^2-4m+6\)
\(\to 4m^2-4m+6=6\)
\(\leftrightarrow 4m(m-1)=0\)
\(\leftrightarrow m=0\quad or\quad m-1=0\)
\(\leftrightarrow m=0(tm)\quad or\quad m=1(tm)\)
b/ Pt có 2 nghiệm cùng dấu
\(\to\begin{cases}\Delta\ge 0\\P>0\end{cases}\)
\(\to 2m-3>0\\\leftrightarrow 2m>3\\\leftrightarrow m>\dfrac{3}{2}\)
Vì pt có 2 nghiệm với mọi m
\(\to m>\dfrac{3}{2}\)
Vậy \(m>\dfrac{3}{2}\)
Pt có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m\ne0\\\Delta=9\left(m+1\right)^2-4m\left(2m+4\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+2m+9\ge0\left(luôn-đúng\right)\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3\left(m+1\right)}{m}\\x_1x_2=\dfrac{2m+4}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{9\left(m+1\right)^2}{m^2}-\dfrac{2\left(2m+4\right)}{m}=4\)
\(\Leftrightarrow9\left(m+1\right)^2-2m\left(2m+4\right)=4m^2\)
\(\Leftrightarrow m^2+10m+9=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\)
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
a: Khi m=1 thì (1): x^2-2(1-2)x+1^2-5-4=0
=>x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=2 hoặc x=-4
b: Δ=(2m-4)^2-4(m^2-5m-4)
=4m^2-16m+16-4m^2+20m+16
=4m+32
Để pt có hai nghiệm phân biệt thì 4m+32>0
=>m>-8
x1^2+x2^2=-3x1x2-4
=>(x1+x2)^2+x1x2+4=0
=>(2m-4)^2+m^2-5m-4+4=0
=>4m^2-16m+16+m^2-5m=0
=>5m^2-21m+16=0
=>(m-1)(5m-16)=0
=>m=16/5 hoặc m=1
chắc do đề bài hơi nâng cao
\(\Delta=\left(2m+1\right)^2-4m\left(m-2\right)=12m+1\)
a/ Với \(m=0\) pt có nghiệm
Với \(m\ne0\) để pt có nghiệm \(\Rightarrow12m+1\ge0\Rightarrow m\ge-\frac{1}{12}\)
Khi đó, theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m+1}{m}\\x_1x_2=\frac{m-2}{m}\end{matrix}\right.\)
b/ \(\left(x_1+x_2\right)^2-2x_1x_2=22\)
\(\Leftrightarrow\left(2+\frac{1}{m}\right)^2-2\left(1-\frac{2}{m}\right)=22\)
\(\Leftrightarrow\left(\frac{1}{m}\right)^2+8\left(\frac{1}{m}\right)-20=0\Rightarrow\left[{}\begin{matrix}\frac{1}{m}=2\\\frac{1}{m}=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=\frac{1}{2}\\m=-\frac{1}{10}\left(l\right)\end{matrix}\right.\)
c/ \(x_1^2-x_2^2=13\)
\(\Leftrightarrow x_1-x_2=\frac{13}{x_1+x_2}=\frac{13m}{2m+1}\)
Kết hợp Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m+1}{m}\\x_1-x_2=\frac{13m}{2m+1}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{17m^2+4m+1}{2m\left(2m+1\right)}\\x_2=\frac{-9m^2+4m+1}{2m\left(2m+1\right)}\end{matrix}\right.\)
\(x_1x_2=\frac{m-2}{m}\Rightarrow\frac{\left(17m^2+4m+1\right)\left(-9m^2+4m+1\right)}{4m\left(2m+1\right)^2}=m-2\)
\(\Leftrightarrow169m^4-48m^3-52m^2-16m-1=0\)
Pt này cho nghiệm rất xấu, chắc đề bài sao đó