K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 10 2020

\(x\in\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\Rightarrow\frac{x}{2}\in\left[-\frac{\pi}{4};\frac{\pi}{4}\right]\Rightarrow cos\frac{x}{2}\ne0\)

Đặt \(t=tan\frac{x}{2}\) \(\Rightarrow t\in\left[-1;1\right]\)

Ta có: \(\left\{{}\begin{matrix}sinx=2sin\frac{x}{2}cos\frac{x}{2}=\frac{2sin\frac{x}{2}}{cos\frac{x}{2}}.cos^2\frac{x}{2}=\frac{2t}{1+t^2}\\cosx=cos^2\frac{x}{2}-sin^2\frac{x}{2}=cos^2\frac{x}{2}\left(1-tan^2\frac{x}{2}\right)=\frac{1-t^2}{1+t^2}\end{matrix}\right.\)

Pt trở thành: \(\frac{2mt}{1+t^2}+\frac{2\left(1-t^2\right)}{1+t^2}=1-m\)

\(\Leftrightarrow m\left(t+1\right)^2=3t^2-1\)

\(\Rightarrow m=\frac{3t^2-1}{\left(t+1\right)^2}=\frac{6t^2-2}{2\left(t+1\right)^2}=\frac{-3\left(t^2+2t+1\right)+\left(9t^2+6t+1\right)}{2\left(t+1\right)^2}=-\frac{3}{2}+\frac{\left(3t+1\right)^2}{2\left(t+1\right)^2}\ge-\frac{3}{2}\)

\(\Rightarrow m\ge-\frac{3}{2}\)

1. Tập giá trị của hs: y = sin2x + cos2x là? 2. Giải pt: \(\frac{cosx-2sinx.cosx}{2cos^2x+sinx-1}=\sqrt{3}\) 3. Tìm GTLN và GTNN của hs: \(y=\frac{sinx+2cosx+3}{2+cosx}\) 4. Tập giá trị của: \(y=\sqrt{3}cos\frac{x}{2}-sin\frac{x}{2}\) 5. Giải pt: \(\sqrt{3}\left(sin2x+cos7x\right)=sin7x-cos2x\) 6. Giải pt: \(cos5x.cosx=cos4x.cos2x+3cos^2x+1\) 7. Đồ thị hs: \(y=sin\left(x+\frac{\pi}{4}\right)\) đi qua điểm nào sau đây? \(a.M\left(\frac{\pi}{4};0\right)\)...
Đọc tiếp

1. Tập giá trị của hs: y = sin2x + cos2x là?

2. Giải pt: \(\frac{cosx-2sinx.cosx}{2cos^2x+sinx-1}=\sqrt{3}\)

3. Tìm GTLN và GTNN của hs: \(y=\frac{sinx+2cosx+3}{2+cosx}\)

4. Tập giá trị của: \(y=\sqrt{3}cos\frac{x}{2}-sin\frac{x}{2}\)

5. Giải pt: \(\sqrt{3}\left(sin2x+cos7x\right)=sin7x-cos2x\)

6. Giải pt: \(cos5x.cosx=cos4x.cos2x+3cos^2x+1\)

7. Đồ thị hs: \(y=sin\left(x+\frac{\pi}{4}\right)\) đi qua điểm nào sau đây? \(a.M\left(\frac{\pi}{4};0\right)\) \(b.M\left(\frac{\pi}{2};1\right)\) \(c.M\left(\frac{-\pi}{4};0\right)\) d. M(1;1)

8. Nghiệm của pt: \(2sin^2x-3sinx+1=0\) thỏa đk: \(0\le x\le\frac{\pi}{2}\) là:

9. Cho pt: m(sinx+cosx)+sinx.cosx+1=0. Tìm m để pt có đúng 1 nghiệm thuộc: \(\left[\frac{-\pi}{2};0\right]\)

10. Giải pt: \(\sqrt{3}cos5x-sin5x=2cos3x\)

11. Tập giá trị của hs: y = cos2x + 4sinx - 2 là?

12. Pt: \(2cos^2x+5sinx=4\) có nghiệm âm lớn nhất =?

13. Tổng tất cả các nghiệm của pt: cos5x + cos2x + 2sin3x.sin2x = 0 trên đoạn: \(\left[0;2\pi\right]\) là?

14. Tìm m để pt: cos2x - (2m - 1)cosx - m + 1 = 0 có đúng 2 nghiệm thuộc: \(\left[\frac{-\pi}{2};\frac{\pi}{2}\right]\) là?

15. Đồ thị hs: y = tanx - 2 đi qua? a. O(0;0) b.M\(\left(\frac{\pi}{4};-1\right)\) c. \(N\left(1;\frac{\pi}{4}\right)\) d. \(P\left(\frac{-\pi}{4};1\right)\)

6
NV
21 tháng 9 2020

6.

\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)

\(\Leftrightarrow cos4x=4cos2x+5\)

\(\Leftrightarrow2cos^22x-1=4cos2x+5\)

\(\Leftrightarrow cos^22x-2cos2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

7.

Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn

8.

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)

NV
21 tháng 9 2020

9.

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}-1\le t\le1\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

\(\Rightarrow mt+\frac{t^2-1}{2}+1=0\)

\(\Leftrightarrow t^2+2mt+1=0\)

Pt đã cho có đúng 1 nghiệm thuộc \(\left[-1;1\right]\) khi và chỉ khi: \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)

10.

\(\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=cos3x\)

\(\Leftrightarrow cos\left(5x-\frac{\pi}{6}\right)=cos3x\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{6}=3x+k2\pi\\5x-\frac{\pi}{6}=-3x+k2\pi\end{matrix}\right.\)

NV
20 tháng 8 2020

7.

Đặt \(\left|sinx+cosx\right|=\left|\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\right|=t\Rightarrow0\le t\le\sqrt{2}\)

Ta có: \(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\frac{t^2-1}{2}\) (1)

Pt trở thành:

\(\frac{t^2-1}{2}+t=1\)

\(\Leftrightarrow t^2+2t-3=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

Thay vào (1) \(\Rightarrow2sinx.cosx=t^2-1=0\)

\(\Leftrightarrow sin2x=0\Rightarrow x=\frac{k\pi}{2}\)

\(\Rightarrow x=\left\{\frac{\pi}{2};\pi;\frac{3\pi}{2}\right\}\Rightarrow\sum x=3\pi\)

NV
20 tháng 8 2020

6.

\(\Leftrightarrow\left(1-sin2x\right)+sinx-cosx=0\)

\(\Leftrightarrow\left(sin^2x+cos^2x-2sinx.cosx\right)+sinx-cosx=0\)

\(\Leftrightarrow\left(sinx-cosx\right)^2+sinx-cosx=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\sinx-cosx=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x-\frac{\pi}{4}=-\frac{\pi}{4}+k\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k\pi\\x=\frac{3\pi}{2}+k\pi\end{matrix}\right.\)

Pt có 3 nghiệm trên đoạn đã cho: \(x=\left\{\frac{\pi}{4};0;\frac{\pi}{2}\right\}\)

loading...  loading...  loading...  

NV
15 tháng 7 2020

Sử dụng đường tròn lượng giác, ta thấy \(3cosx-2=0\) có đúng 1 nghiệm thuộc \(\left(0;\frac{3\pi}{2}\right)\)

Vậy để pt đã cho có 3 nghiệm pb thuộc \(\left(0;\frac{3\pi}{2}\right)\) thì \(2cosx+3m-1=0\) có 2 nghiệm pb sao cho \(-1< cosx< 0\)

\(2cosx+3m-1=0\Rightarrow cosx=\frac{1-3m}{2}\)

\(\Rightarrow-1< \frac{1-3m}{2}< 0\Rightarrow\left\{{}\begin{matrix}\frac{3-3m}{2}>0\\\frac{1-3m}{2}< 0\end{matrix}\right.\)

\(\Rightarrow\frac{1}{3}< m< 1\)

\(\sqrt{3}sinx=cos\left(\frac{3\pi}{2}-2x\right)\)

\(\Leftrightarrow\sqrt{3}sinx=-cos\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow\sqrt{3}sinx=-sin2x\)

\(\Leftrightarrow2sinx.cosx+\sqrt{3}sinx=0\)

\(\Leftrightarrow sinx\left(2cosx+\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-\frac{\sqrt{3}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{5\pi}{6}+k2\pi\\x=-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Do\(x\in\left[\frac{-3\pi}{2};-\pi\right]\)

\(\Leftrightarrow x=-\pi;x=\frac{-7\pi}{6};x=\frac{-5\pi}{6}\)