K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NV
Nguyễn Việt Lâm
Giáo viên
30 tháng 6 2020
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{b}{a}=\frac{ab}{a^2}>0\\x_1x_2=\frac{b}{a}=\frac{ab}{a^2}>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)
\(\sqrt{\frac{x_1}{x_2}}+\sqrt{\frac{x_2}{x_1}}-\sqrt{\frac{b}{a}}=\frac{x_1+x_2}{\sqrt{x_1x_2}}-\sqrt{\frac{b}{a}}=\frac{\frac{b}{a}}{\sqrt{\frac{b}{a}}}-\sqrt{\frac{b}{a}}=\sqrt{\frac{b}{a}}-\sqrt{\frac{b}{a}}=0\)
D
1
23 tháng 5 2022
Thay \(x=2-\sqrt{3}\) vào Pt, ta được:
\(\left(2-\sqrt{3}\right)^2-3\left(2-\sqrt{3}\right)+k-1=0\)
\(\Leftrightarrow7-4\sqrt{3}-6+3\sqrt{3}+k-1=0\)
\(\Leftrightarrow k-\sqrt{3}=0\)
hay \(k=\sqrt{3}\)
\(x_1+x_2=3\)
nên \(x_2=3-2+\sqrt{3}=\sqrt{3}+1\)
Giả sử \(x_1=\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}=\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}=-5+2\sqrt{6}\)
Do \(x_1\) là nghiệm của pt nên:
\(a\left(-5+2\sqrt{6}\right)^2+b\left(-5+2\sqrt{6}\right)+c=0\)
\(\Leftrightarrow49a-20a\sqrt{6}-5b+2b\sqrt{6}+c=0\)
\(\Leftrightarrow49a-5b+c=\left(20a-2b\right)\sqrt{6}\)
Do vế trái là đại lượng hữu tỉ, vế phải vô tỉ nên đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}49a-5b+c=0\\20a-2b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=10a\\49a-50a+c=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}c=a\\b=10a\end{matrix}\right.\) thay vào pt ban đầu:
\(ax^2+10ax+a=0\Leftrightarrow x^2+10x+1=0\)
\(\Rightarrow x_2=\frac{1}{x_1}=-5-2\sqrt{6}\)