Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(m+1\right)^2-8\ge0\Rightarrow\left[{}\begin{matrix}m\ge-1+2\sqrt{2}\\m\le-1-2\sqrt{2}\end{matrix}\right.\)
Phương trình ko có nghiệm \(x=0\) nên biểu thức đề bài luôn xác định
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=2\end{matrix}\right.\)
\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2=14\)
\(\Leftrightarrow\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2=16\)
\(\Leftrightarrow\left(\frac{x_1^2+x_2^2}{x_1x_2}\right)^2=16\Leftrightarrow\left(\frac{x_1^2+x_2^2}{2}\right)^2=16\)
\(\Leftrightarrow\frac{x_1^2+x_2^2}{2}=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow\left(m-1\right)^2=12\Leftrightarrow\left[{}\begin{matrix}m=1+2\sqrt{3}\\m=1-2\sqrt{3}\left(l\right)\end{matrix}\right.\)
Chỗ pt ko có nghiệm x = 0 là sao vậy ạ, mong bn giải thích giùm mình vs ạ
Tự tìm delta nhé.
Áp dụng Viete: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m+2\end{matrix}\right.\)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1x_2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{\left(2m-2\right)^2-2\left(m+2\right)}{m+2}=4\)
\(\Leftrightarrow4m^2-10m-4m-8=0\)
\(\Leftrightarrow4m^2-14m-8=0\)
\(\Leftrightarrow\left(m-4\right)\left(2m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=\frac{-1}{2}\end{matrix}\right.\)
\(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)\)
\(=5m^2-6m+9=5\left(m-\frac{3}{5}\right)^2+\frac{36}{5}>0;\forall m\)
Mặt khác \(-m^2+m-2\ne0;\forall m\Rightarrow\) biểu thức đề bài luôn xác định
\(B=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^3-6\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)\)
Xét \(A=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{\left(m-1\right)^2-2\left(-m^2+m-2\right)}{-m^2+m-2}=\frac{3m^2-4m+5}{-m^2+m-2}\)
\(\Rightarrow-Am^2+Am-2A=3m^2-4m+5\)
\(\Leftrightarrow\left(A+3\right)m^2-\left(A+4\right)m+2A+5=0\)
\(\Delta=\left(A+4\right)^2-4\left(A+3\right)\left(2A+5\right)\ge0\)
\(\Leftrightarrow7A^2+36A+44\le0\Rightarrow-\frac{22}{7}\le A\le-2\)
Thay vào B:
\(B=A^3-6A\) với \(-\frac{22}{7}\le A\le-2\)
\(B=A^2\left(A+2\right)-2\left(A+1\right)\left(A+2\right)+4\)
Do \(A\le-2\Rightarrow\left\{{}\begin{matrix}A+2\le0\\\left(A+1\right)\left(A+2\right)\ge0\end{matrix}\right.\) \(\Rightarrow B\le4\)
\(\Rightarrow B_{max}=4\) khi \(A=-2\) hay \(m=1\)
\(mx^2+\left(2m-1\right)x+m-2=0\) (1)
a)
- Nếu m = 0 thì (1) ⇔ - x - 2 = 0 ⇔ x = -2
- Nếu m # 0 thì (1) là phương trình bậc 2
Ta có: △1 = (2m-1)2 - 4m(m-2) = 4m + 1
Để (1) có nghiệm ⇔ △1 ≥ 0 ⇔ 4m + 1 ≥ 0 ⇔ m ≥ \(-\dfrac{1}{4}\)
Vậy để phương trình có nghiệm thì m ≥ \(-\dfrac{1}{4}\)
b) Với m ≥ \(-\dfrac{1}{4}\) thì phương trình có nghiệm x1, x2 nên theo HT Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{m}\\x_1x_2=\dfrac{m-2}{m}\end{matrix}\right.\)
Theo đầu bài:
x12 + x22 = 2018
⇔ (x1 + x2)2 - 2x1x2 = 2018
⇔ \(\left(\dfrac{1-2m}{m}\right)^2-2.\dfrac{m-2}{m}=2018\)
⇔ \(\dfrac{4m^2-4m+1}{m^2}-\dfrac{2m-4}{m}=2018\)
⇔ \(\dfrac{4m^2-4m+1-m\left(2m-4\right)}{m^2}=2018\)
⇔ \(\dfrac{4m^2-4m+1-2m^2+4m}{m^2}=2018\)
⇔ 2m2 + 1 = 2018m2
⇔ 2016m2 = 1
⇔ m2 = \(\dfrac{1}{2016}\)
⇔ \(\left[{}\begin{matrix}m=\sqrt{\dfrac{1}{2016}}\left(TM\right)\\m=-\sqrt{\dfrac{1}{2016}}\left(TM\right)\end{matrix}\right.\) ...
Vậy m ∈ \(\left\{\pm\sqrt{\dfrac{1}{2016}}\right\}\)
a) để phương trình có 2 nghiệm : \(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\Delta'\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\left(m+2\right)^2-\left(m-3\right)\left(m+1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\6m+7\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{7}{6}\end{matrix}\right.\)
thay \(x_1=2\) vào phương trình ta có :
\(4\left(m-3\right)-4\left(m+2\right)+m+1=0\Leftrightarrow m=19\)
áp dụng hệ thức vi ét ta có : \(x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}=\dfrac{2\left(21\right)}{16}=\dfrac{21}{8}\)
\(\Rightarrow x_2=\dfrac{21}{8}-x_1=\dfrac{21}{8}-2=\dfrac{5}{8}\)
vậy ....................................................................................................
b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}\\x_1x_2=\dfrac{m+1}{m-3}\end{matrix}\right.\)
ta có : \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=10\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=10\Leftrightarrow\dfrac{2\left(m+2\right)}{m-3}:\dfrac{m+1}{m-3}=10\)
\(\Leftrightarrow\dfrac{2m+4}{m+1}=10\Leftrightarrow2m+4=10m+10\Leftrightarrow m=\dfrac{-3}{4}\left(L\right)\)
vậy không có m thỏa mãn điều kiện bài toán .
câu 2) a) để phương trình có 2 nghiệm cùng dấu \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\Delta'\ge0\\p>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\left(m+1\right)^2-\left(m-2\right)\left(m-1\right)\ge0\\\dfrac{m-1}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\5m-1\ge0\\\left(m-1\right)\left(m-2\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m\ge\dfrac{1}{5}\\\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>2\) vậy \(m>2\)
b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m+1\right)}{m-2}\\x_1x_2=\dfrac{m-1}{m-2}\end{matrix}\right.\)
ta có : \(x_1^3+x_2^3=64\Leftrightarrow\left(x_1+x_2\right)^3-3\left(x_1x_2\right)\left(x_1+x_2\right)=64\)
\(\left(\dfrac{2m+2}{2-m}\right)^3+6\left(\dfrac{m-1}{m-2}\right)\left(\dfrac{m+1}{m-2}\right)=64\)
\(\Leftrightarrow\dfrac{\left(-2m-2\right)^3}{\left(m-2\right)^3}+\dfrac{6\left(m-1\right)\left(m+1\right)\left(m-2\right)}{\left(m-2\right)^3}=64\)
\(\Leftrightarrow\dfrac{-8m^3-24m^2-24m-8+6m^2-12m^3-6m+12}{m^2-6m^2+12m-8}=64\)
\(\Leftrightarrow\dfrac{-20m^3-18m^2-30m+4}{m^3-6m^2+12m-8}=64\)
\(\Leftrightarrow84m^3-402m^2+798m-516=0\)
giải nốt nha .
\(x_1+x_2=-2\left(m-1\right)\) ; \(x_1=-6m+5\)
\(\Rightarrow x_2=-2\left(m-1\right)-\left(-6m+5\right)=4m-3\)
Anh Mai
c/
Ta có:
\(x_1+x_2+2x_1x_2\le6\)
\(\Leftrightarrow-2\left(m-1\right)+2\left(-2m+5\right)\le6\)
\(\Leftrightarrow-2m+2-4m+10\le6\)
\(\Leftrightarrow-6m\le-6\)
\(\Rightarrow m\ge1\)
Kết hợp với điều kiện \(\Delta\) ta có: \(m\ge2\)