Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chỉ viec tinh denta va tui chac chan la denta k con thm so m va >0 nen la dpcm
\(A=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left[\frac{x_1^2+x^2_2}{x_1x_2}\right]^2-2=\left[\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2\)
\(=\left[\frac{\left(2m-2\right)^2}{2m-5}-2\right]^2-2\)\(=\left(\frac{4m^2-8m+4}{2m-5}-2\right)^2-2=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)
A nguyên khi \(\left(2m-1+\frac{9}{2m-5}\right)^2\in Z\)
\(\Leftrightarrow B=2m-1+\frac{9}{2m-5}=\frac{8m^2-12m+14}{2m-5}\)\(=\sqrt{k}\) với k là một số nguyên dương.
\(\Rightarrow8m^2-12m+14=\sqrt{k}\left(2m-5\right)\)\(\Leftrightarrow8m^2-2\left(6+\sqrt{k}\right)m+14+5\sqrt{k}=0\text{ (1)}\)
(1) có nghiệm m khi \(\Delta'=\left(\sqrt{k}+6\right)^2-8\left(14+5\sqrt{k}\right)\ge0\)
\(\Leftrightarrow k-28\sqrt{k}-76\ge0\Leftrightarrow\sqrt{k}\le14-4\sqrt{17}
Theo đề, ta có:
\(\left\{{}\begin{matrix}4-2\left(2m-5\right)-n=0\\9+3\left(2m-5\right)-n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4-4m+10-n=0\\9+6m-15-n=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4m-n=-14\\6m-n=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=6\end{matrix}\right.\)
1 ) \(\Delta=\left(-2m\right)^2-4.\left(-5\right)=4m^2+20>0\)
Vì \(\Delta>0\) . Nên phương trình luôn có hai nghiệm phân biệt với mọi m
2 ) Theo định lý vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=-2m-5\end{matrix}\right.\)
Đặt : \(A=\left|x_1-x_2\right|\)
\(\Rightarrow A^2=\left(x_1-x_2\right)^2\)
\(=x_1^2+x_2^2-2.x_1.x_2\)
\(=\left[\left(x_1+x_2\right)^2-2.x_1.x_2\right]-2.x_1.x_2\)
\(=\left[\left(2m\right)^2-2.\left(-2m-5\right)\right]-2.\left(-2m-5\right)\)
\(=4m^2+4m+10+4m+10\)
\(=4m^2+8m+20\)
\(=4\left(m^2+2m+5\right)\)
\(=4\left[\left(m^2+2m+1\right)+4\right]\)
\(=4\left[\left(m+1\right)^2+4\right]\)
Do : \(\left(m+1\right)^2\ge0\Rightarrow4\left[\left(m+1\right)^2+4\right]\ge16\)
Hay \(A^2\ge16\Leftrightarrow A\ge4\)( Vì \(A\ge0\) )
Vậy GTNN của \(\left|x_1-x_2\right|\) là 4 khi \(\left(m+1\right)^2=0\Leftrightarrow m=-1\)
Chúc bạn học tốt !!
den ta =4m^2 +20>0 <luon dung voi moi x thuoc R>
ket luan pt luon co 2 nghiem phan biet voi moi m
b, voi moi m pt co 2 nghiem phan biet
theo viet x1+x2=2m
x1nh2 = -5
[|x1-x2|]^2=x1^2+x2^2-2x1x2
=[x1+x2]^2-4x1x2
=4m^2+20lon hon hoac bang 20
dau bang xay ra khi chi khi m =0
\(x^2+5x-n=0\)
\(\Delta=25+4n\ge0\Rightarrow n\ge-\frac{25}{4}\)
Khi đó, để pt có 2 nghiệm đều ko dương
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-5< 0\\x_1x_2=-n\ge0\end{matrix}\right.\) \(\Rightarrow n\le0\)
Vậy để pt có nghiệm dương \(\Rightarrow n>0\)
\(\Rightarrow n=1\) là số nguyên dương nhỏ nhất để pt có nghiệm dương
"khi đó, để pt cs ng dương" hình như thế này chứ ạ