K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2020

\(\Leftrightarrow\left(2m-4\right)x=3\)

Để pt có nghiệm \(\Leftrightarrow2m-4\ne0\Rightarrow m\ne2\)

Để pt vô nghiệm \(\Leftrightarrow2m-4=0\Leftrightarrow m=2\)

9 tháng 3 2020

Lần sau ghi có chủ ngữ, vị ngữ vào, ng ta mới hiểu, mới mở đầu câu đã ghi dấu \(\Leftrightarrow\) ai mà mà hiểu

13 tháng 12 2019

Câu c) mình sai rồi nên hãy giúp mình câu a và b thôi 

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

2 tháng 3 2016

a)  \(\left(1\right)\)    \(\Leftrightarrow\)      \(\left(m^2-9\right)x=m^2-4m+3\)\(=\left(m-1\right)\left(m-3\right)\)

Phương trình  \(\left(1\right)\) có tập nghiệm là R

             \(\Leftrightarrow\)      \(m^2-9=\left(m-1\right)\left(m-3\right)=0\)   \(\Leftrightarrow m=3\)

b) Phương trình có nghiệm duy nhất :  \(\Leftrightarrow m^2-9\ne0\)    \(\Leftrightarrow m\ne\pm3\)

Khi đó nghiệm của phương trình :  \(x=\frac{m-1}{m-3}=1-\frac{4}{m+3}\)

Do đó \(x\in Z\) \(\Leftrightarrow\frac{4}{m+3}\in Z\)               \(\Leftrightarrow m+3\in\left\{\pm1;\pm2;\pm4\right\}\)

                                                   \(\Leftrightarrow m\in\left\{-7;-5;-4;-2;-1;1\right\}\)

2 tháng 3 2016

khó

1 tháng 8 2021

(m-1)x2-2mx+m-2=0(m\(\ne1\) )

\(\Delta\)'=\(m^2-\left(m-2\right)\left(m-1\right)\)

   =\(m^2-m^2+m+2m-2\)

 =3m-2

Để pt có nghiệm 2 ngiệm trái dấu thì \(\Delta\) =3m-2>0\(\Leftrightarrow m>\dfrac{2}{3}\)

Áp dụng hệ thức Viet, ta có 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-1}\\x_1.x_2=\dfrac{m-2}{m-1}\end{matrix}\right.\)

Để PT có 2 nghiệm trái dấu thì x1x2<0\(\Leftrightarrow\dfrac{m-2}{m-1}< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-2< 0\\m-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}m-2>0\\m-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m< 2\\m>1\end{matrix}\right.\\\left\{{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow1< m< 2\)

Vậy 1<m<2 thì pt có 2 nghiệm trái dấu 

câu b

.Với m=1\(\Rightarrow-2x-1=0\Leftrightarrow x=\dfrac{-1}{2}\left(l\right)\)

.Với \(m\ne1\)

\(\Rightarrow\Delta\)'=3m-2\(\ge0\Leftrightarrow m\ge\dfrac{2}{3}\)

 

 

1 tháng 8 2021

câu b là 2 nghiệm dương phân biệt nên △>0 mà

\(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-3m\right)\)

\(=4m^2-8m+4-4m^2+12m=4m+4\)

Để phương trình có nghiệm thì 4m+4>=0

hay m>=-1

11 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-3\right)^2-4\left(-2\right)\left(-m+1\right)>0\\x_1+x_2=\dfrac{3}{-2}< 0\\x_1x_2=\dfrac{-m+1}{-2}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}17-8m>0\\-m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{17}{8}\\m>1\end{matrix}\right.\Leftrightarrow1< m< \dfrac{17}{8}\)

\(2,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-4\right)^2-4\left(-3\right)\left(-2m+1\right)\ge0\\x_1+x_2=\dfrac{4}{-3}< 0\\x_1x_2=\dfrac{-2m+1}{-3}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}28-24m\ge0\\-2m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{7}{6}\\m>\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< m\le\dfrac{7}{6}\)

11 tháng 11 2021

Giúp em câu e bài 1,bài 2,3 với