Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,Giải sử x0 là nghiệm chung của hai pt
Ta có hệ: \(\left\{{}\begin{matrix}x_0^2-\left(m+2\right)x_0+3m-1=0\left(1\right)\\x_0^2-\left(2m+3\right)x_0+3m+3=0\end{matrix}\right.\)
=> \(\left(2m+3\right)x_0-\left(m+2\right)x_0+3m-1-3m-3=0\)
<=> \(x_0\left(m+1\right)-4=0\)
Do hai pt có nghiệm chung => \(x_0\in R\) => \(m\ne-1\)
<=> \(x_0=\frac{4}{m+1}\) thay vào (1) có
\(\frac{16}{\left(m+1\right)^2}-\frac{\left(m+2\right).4}{m+1}+3m-1=0\)
<=> \(\frac{16}{\left(m+1\right)^2}-\frac{4\left(m+2\right)\left(m+1\right)}{\left(m+1\right)^2}+\frac{3m\left(m+1\right)^2}{\left(m+1\right)^2}-\frac{\left(m+1\right)^2}{\left(m+1\right)^2}=0\)
<=> \(16-4\left(m^2+3m+2\right)+3m\left(m^2+2m+1\right)-\left(m^2+2m+1\right)=0\)
<=> \(16-4m^2-12m-8+3m^3+6m^2+3m-m^2-2m-1=0\)
<=> \(3m^3+m^2-11m+7=0\)
<=> \(3m^3-3m^2+4m^2-4m-7m+7=0\)
<=>\(3m^2\left(m-1\right)+4m\left(m-1\right)-7\left(m-1\right)=0\)
<=> \(\left(m-1\right)\left(3m^2+4m-7\right)=0\)
<=> \(\left(m-1\right)^2\left(3m+7\right)=0\)
<=> \(\left[{}\begin{matrix}m=1\\m=-\frac{7}{3}\end{matrix}\right.\)
Áp dụng định lí viet: \(x_1+x_2=-\frac{b}{a},x_1.x_2=\frac{c}{a}\)
\(ax^2+bx+c=a\left(x^2+\frac{b}{a}x+\frac{c}{a}\right)=a\left(x^2-\left(x_1+x_2\right)x+x_1.x_2\right)=a\left[\left(x^2-x_1.x\right)-\left(x_2x-x_1x_2\right)\right]\)
=\(a\left[x\left(x-x_1\right)-x_2\left(x-x_1\right)\right]=a\left(x-x_1\right)\left(x-x_2\right)\)
Xem lại đề.
Nếu \(P\left[Q\left(x\right)\right]=0\)với mọi x thì
\(P\left(2005\right)=0< \frac{1}{64}\)
mình đang phân vân nhưng cx góp ý kiến nha :D
ta có P(x) có 3 nghiệm phân biệt và P(Q(x))=0 nên Q(x) có 3 giá trị lần lượt là nghiệm của P(x)
ko biết cái này cs giúp ích hay không nhưng nhìn vào đề đã thấy như vậy