K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

Áp dụng hệ thức Vi-et, ta có :

\(\hept{\begin{cases}x_1x_2=m-1\\x_1+x_2=m\end{cases}}\)

Thay vào biểu thức, ta được :

\(A=\frac{2\left(m-1\right)+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}=\frac{-\frac{1}{2}\left(m^2+2\right)+\frac{m^2}{2}+2m+2}{m^2+2}\)

\(=-\frac{1}{2}+\frac{\frac{\left(m+2\right)^2}{2}}{m^2+2}\ge\frac{-1}{2}\)

Vậy GTNN của A là \(\frac{-1}{2}\)khi m = -2

11 tháng 2 2023

Giả sử ta định m sao cho pt \(x^2-mx+m-1=0\left(1\right)\) luôn có nghiệm.

Theo định lí Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(C=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(\Rightarrow C\left(m^2+2\right)=2m+1\Rightarrow Cm^2-2m+\left(2C+1\right)=0\left(2\right)\)

Coi phương trình (2) là phương trình ẩn m tham số C, ta có:

\(\Delta'=1^2-C.\left(2C+1\right)=-2C^2-C+1\)

Để phương trình (2) có nghiệm thì:

\(\Delta'\ge0\Rightarrow-2C^2-C+1\ge0\)

\(\Leftrightarrow\left(2C-1\right)\left(C+1\right)\le0\)

\(\Leftrightarrow-1\le C\le\dfrac{1}{2}\)

Vậy \(MinC=-1;MaxC=\dfrac{1}{2}\)

11 tháng 2 2023

Cảm ơn bạn nhiều

NV
14 tháng 4 2022

1.

\(a+b+c=0\) nên pt luôn có 2 nghiệm

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)

Dấu "=" xảy ra khi \(m=1\)

2.

\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)

\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)

15 tháng 4 2022

undefined

19 tháng 3 2020

\(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2\ge0\forall m\)

=> phương trình  luôn có nghiêm zới \(\forall m\)

ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}=>x^2_1+x^2_2}=m^2-2m+2\)

ta có \(A=\frac{2x_1x_2+3}{x^2_1+x^2_2+2\left(x_1x_2+1\right)}=\frac{2m+1}{m^2+2}\)

=> \(A-1=\frac{-\left(m-1\right)^2}{m^2+2}\le0\forall m\)

=>\(A\le1\)

dấu = xảy ra khi zà chỉ khi m=1

Trả lời 

a) Delta phương trình đó rồi xét 2 trường hợp

b) phần à delta lên sẽ tìm được m rồi thế vào là xong

Chắc vậy không chắc cho nắm

25 tháng 2 2022

\(\Delta'=\left[-\left(m+4\right)\right]^2-1\left(m^2-8\right)=m^2+8m+16-m^2+8=8m+24\)

Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow8m+24\ge0\Leftrightarrow m\ge-3\)

Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=2m+8\\x_1x_2=m^2-8\end{matrix}\right.\)

\(A=x^2_1+x^2_2-x_1-x_2\\ =\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\\ =\left(2m+8\right)^2-2\left(m^2-8\right)-\left(2m+8\right)\\ =4m^2+32m+64-2m^2+16-2m-16\\ =2m^2+30m+64\)

Amin=\(-\dfrac{97}{2}\)\(\Leftrightarrow m=-\dfrac{15}{2}\)

\(B=x^2_1+x^2_2-x_1x_2\\ =\left(x_1+x_2\right)^2-3x_1x_2\\ =\left(2m+8\right)^2-3\left(m^2-8\right)\\ =4m^2+32m+64-3m^2+24\\ =m^2+32m+88\)

Bmin=-168\(\Leftrightarrow\)m=-16

 

10 tháng 5 2018

mọi ng khỏi cần giải nữa nha mk bk lm r

28 tháng 6 2016

a)dùng denta còn b dùng vi ét