Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Thay m=-7 vào pt ta được: \(x^4+5x^2-14=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\\x^2=-7\left(L\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy...
b) Đặt \(t=x^2\left(t\ge0\right)\)
=>Với mỗi t dương ta tìm được hai nghiệm x phân biệt
Pttt: \(t^2-\left(m+2\right)t+3m+7=0\) (*)
Để pt ban đầu có hai nghiệm pb <=> pt (*) có 1 nghiệm dương duy nhất hoặc có hai nghiệm phân biệt trái dấu
TH1:PT (*) có 1 nghiệm dương duy nhất
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=0\\-\dfrac{b}{2a}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m-24=0\\\dfrac{m+2}{2}>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=4+2\sqrt{10}\\m=4-2\sqrt{10}\end{matrix}\right.\\m>-2\end{matrix}\right.\)\(\Rightarrow m=4+2\sqrt{10}\) (1)
TH2: Pt (*) có hai nghiệm phân biệt trái dấu
\(\Leftrightarrow ac< 0\) \(\Leftrightarrow3m+7< 0\) \(\Leftrightarrow m< -\dfrac{7}{3}\) (2)
Từ (1) (2) =>\(\left[{}\begin{matrix}m=4+2\sqrt{10}\\m< -\dfrac{7}{3}\end{matrix}\right.\)
trông kết quả em tự làm ra không được tròn nên em gửi câu hỏi lên đây. Hóa ra mình làm đúng (??????)
Đề bài của b thiếu vế phải nên mihf mặc định bằng 0 luôn nha.
a) m=-1 => \(x^2-x-2=0\)
Xét a-b+c=1+1-2=0
=>x1= -1 ; x2=2
b) Delta =\(\left(2m+1\right)^2-4\left(m^2+3m\right)=4m^2+4m+1-4m^2-12m=-8m+1\)
Pt có 2 nghiệm pb=> \(-8m+1\ge0\Leftrightarrow m\le\frac{1}{8}\)
ÁP dụng định lí Viets ta có:
x1+x2=-2m-1
x1.x2=\(m^2+3m\)
Ta có: x1.x2=4
=>\(m^2+3m=4\Leftrightarrow m^2+3m-4=0\)
Xét a+b+c=1+3-4=0
=>m1= 1(loại)
m2=-4(thỏa mãn)
Vậy m=-4
\(\hept{\begin{cases}x+y=3m+2\\3x-2y=11-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3m+2-x\\3x-2\left(3m+2-x\right)=11-m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3m+2-x\\3x-2\left(3m+2-x\right)=11-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3m+2-x\\5x-6m-4=11-m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3m+2-x\\5x=5m+15\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2m-1\\x=m+3\end{cases}}\)
Vậy thì \(x^2-y^2=\left(m+3\right)^2-\left(2m-1\right)^2=m^2+6m+9-4m^2+4m-1\)
\(=-3m^2+10m+8=-3\left(m^2-\frac{10}{3}m+\frac{25}{9}\right)+\frac{49}{3}\)
\(=-3\left(m-\frac{5}{3}\right)^2+\frac{49}{3}\le\frac{49}{3}\)
\(x^2-y^2=\frac{40}{3}\Leftrightarrow m=\frac{5}{3}\)
Vậy để x2 - y2 đạt GTLN thì m = 5/3.
Bài giải :
x+y=3m+2 |
3x−2y=11−m |
⇔{
y=3m+2−x |
3x−2(3m+2−x)=11−m |
⇔{
y=3m+2−x |
3x−2(3m+2−x)=11−m |
⇔{
y=3m+2−x |
5x−6m−4=11−m |
⇔{
y=3m+2−x |
5x=5m+15 |
⇔{
y=2m−1 |
x=m+3 |
Vậy thì x2−y2=(m+3)2−(2m−1)2=m2+6m+9−4m2+4m−1
=−3m2+10m+8=−3(m2−103 m+259 )+493
=−3(m−53 )2+493 ≤493
x2−y2=403 ⇔m=53
Vậy để x2 - y2 đạt GTLN thì m = 5/3.
a, Với m=1 thay vào pt
Ta có
\(x^2+x-1=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
b,
Thay x=2 vào pt
ta có
\(4-2-3m+2=0\)
\(\Leftrightarrow4-3m=0\)
\(\Rightarrow m=\dfrac{4}{3}\)
c, Ta có
\(\Delta=1-4\left(-3m+2\right)\)
\(=12m-7\)
Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\Rightarrow12m-7>0\)
\(\Rightarrow m>\dfrac{7}{12}\)
d,
Để ptcos nghiệm kép thì \(\Delta=0\)
\(\Rightarrow12m-7=0\)
\(\Rightarrow m=\dfrac{7}{12}\)
e,
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Rightarrow m< \dfrac{7}{12}\)
a. Bạn tự giải
b. Pt có nghiệm kép khi:
\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)
Khi đó: \(x_{1,2}=m+1=2\)
c. Do pt có nghiệm bằng 4:
\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)
\(\Leftrightarrow8-4m=0\Rightarrow m=2\)
\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)
a,Có \(\Delta=4\left(m+2\right)^2-4.-\left(4m+12\right)=4m^2+32m+64=4\left(m+4\right)^2\ge0\forall m\)
=> Phương trình luôn có nghiệm với mọi m
b,Phương trình có nghiệm \(\left[{}\begin{matrix}x=\dfrac{-2\left(m+2\right)+2\left(m+4\right)}{2}=2\\x=\dfrac{-2\left(m+2\right)-2\left(m+4\right)}{2}=-2m-6\end{matrix}\right.\) (ở đây không cần chia trường hợp của m bởi khi chia trường hợp thì x chỉ đổi giá trị cho nhau)
TH1: \(x_1=x_2^2\Leftrightarrow4=\left(-2m-6\right)^2\)\(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=-4\end{matrix}\right.\) (Thay vào pt thấy không thỏa mãn)
TH2:\(x_1=x_2^2\Leftrightarrow-2m-6=2^2\)\(\Leftrightarrow m=-5\) (Thay vào pt thấy thỏa mãn)
Vậy ...